OrdFacReg: Least Squares, Logistic, and Cox-Regression with Ordered Predictors

In biomedical studies, researchers are often interested in assessing the association between one or more ordinal explanatory variables and an outcome variable, at the same time adjusting for covariates of any type. The outcome variable may be continuous, binary, or represent censored survival times. In the absence of a precise knowledge of the response function, using monotonicity constraints on the ordinal variables improves efficiency in estimating parameters, especially when sample sizes are small. This package implements an active set algorithm that efficiently computes such estimators.

AuthorKaspar Rufibach
Date of publication2015-07-04 15:27:12
MaintainerKaspar Rufibach <kaspar.rufibach@gmail.com>
LicenseGPL (>= 2)
Version1.0.6
http://www.kasparrufibach.ch

View on CRAN

Files

OrdFacReg
OrdFacReg/NAMESPACE
OrdFacReg/NEWS
OrdFacReg/R
OrdFacReg/R/logRegDeriv.r
OrdFacReg/R/lmSS.r
OrdFacReg/R/setminus.r
OrdFacReg/R/ordFacReg.r
OrdFacReg/R/logRegSubspace.r
OrdFacReg/R/maxStep.r
OrdFacReg/R/logRegLoglik.r
OrdFacReg/R/constraintMats.r
OrdFacReg/R/coxLoglik.r
OrdFacReg/R/lmLSE.r
OrdFacReg/R/coxDeriv.r
OrdFacReg/R/expandBeta.r
OrdFacReg/R/dummy.r
OrdFacReg/R/coxSubspace.r
OrdFacReg/R/phi_jl.r
OrdFacReg/R/LSEsubspace.r
OrdFacReg/R/shrinkBeta.r
OrdFacReg/R/Abeta.r
OrdFacReg/R/ordFacRegCox.r
OrdFacReg/R/indexDummy.r
OrdFacReg/R/prepareData.r
OrdFacReg/MD5
OrdFacReg/DESCRIPTION
OrdFacReg/man
OrdFacReg/man/ordFacReg-package.Rd OrdFacReg/man/internal.Rd OrdFacReg/man/prepareData.Rd OrdFacReg/man/ordFacRegCox.Rd OrdFacReg/man/ordFacReg.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.