Description Usage Arguments Details Author(s) References See Also
Computes the value of the least squares criterion in the problem of two ordered isotonic regression functions.
1 | LSfunctional(f1, g1, w1, f2, g2, w2)
|
f1 |
Vector in R^n, specifies values of upper function at which criterion should be evaluated. |
g1 |
Vector in R^n, measurements of upper function. |
w1 |
Vector in R^n, weights for upper function. |
f2 |
Vector in R^n, specifies values of lower function at which criterion should be evaluated. |
g2 |
Vector in R^n, measurements of lower function. |
w2 |
Vector in R^n, weights for lower function. |
This function simply computes for the above vectors
L(f1, f2) \ = \ ∑_{i=1}^n w1_i(f1_i - g1_i)^2 + ∑_{i=1}^n w2_i(f2_i - g2_i)^2.
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
This function is used by BoundedAntiMeanTwo.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.