tests/testthat/_snaps/methods.md

S3 pagfl

Groups: 3

Call:
pagfl(formula = y ~ a + b, data = data, n_periods = 150, lambda = 5)

Coefficients:
               a        b
Group 1 -0.98847  1.54126
Group 2 -5.05014 -1.02301
Group 3  0.22479  1.54219
Call:
pagfl(formula = y ~ a + b, data = data, n_periods = 150, lambda = 5)

Balanced panel: N = 20, T = 150, obs = 3000

Convergence reached:
TRUE (542 iterations)

Information criterion:
     IC  lambda 
1.04519 5.00000

Residuals:
     Min       1Q   Median       3Q      Max 
-3.10271 -0.67485 -0.01057  0.68122  3.23017

3 groups:
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 1  1  1  2  1  1  2  2  2  3  3  2  3  1  3  3  3  1  2  2

Coefficients:
                a        b
Group 1 -0.98847  1.54126
Group 2 -5.05014 -1.02301
Group 3  0.22479  1.54219

Residual standard error: 0.99552 on 2978 degrees of freedom
Mean squared error: 0.9838
Multiple R-squared: 0.91956, Adjusted R-squared: 0.91899
Code
  summary(estim)
Output
  Call:
  pagfl(formula = y ~ a + b, data = data, index = c("i_index", 
      "t_index"), lambda = 1000)

  Unbalanced panel: N = 20, T = 149-150, obs = 2998

  Convergence reached:
  TRUE (25 iterations)

  Information criterion:
          IC     lambda 
     7.53725 1000.00000

  Residuals:
        Min        1Q    Median        3Q       Max 
  -10.62978  -1.66933   0.04107   1.65432  12.33992

  1 group

  Coefficients:
                  a       b
  Group 1 -2.08433 0.67843

  Residual standard error: 2.75179 on 2976 degrees of freedom
  Mean squared error: 7.51678
  Multiple R-squared: 0.38579, Adjusted R-squared: 0.38146

S3 grouped_plm

Groups: 3

Call:
grouped_plm(formula = y ~ a + b, data = data, groups = groups_0, 
    n_periods = 150)

Coefficients:
               a        b
Group 1 -0.98847  1.54126
Group 2 -5.05014 -1.02301
Group 3  0.22479  1.54219
Call:
grouped_plm(formula = y ~ a + b, data = data, groups = groups_0, 
    n_periods = 150)

Balanced panel: N = 20, T = 150, obs = 3000

Information criterion: 1.04519

Residuals:
     Min       1Q   Median       3Q      Max 
-3.10271 -0.67485 -0.01057  0.68122  3.23017

3 groups:
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 1  1  1  2  1  1  2  2  2  3  3  2  3  1  3  3  3  1  2  2

Coefficients:
                a        b
Group 1 -0.98847  1.54126
Group 2 -5.05014 -1.02301
Group 3  0.22479  1.54219

Residual standard error: 0.99552 on 2978 degrees of freedom
Mean squared error: 0.9838
Multiple R-squared: 0.91956, Adjusted R-squared: 0.91899
Code
  summary(estim)
Output
  Call:
  grouped_plm(formula = y ~ a + b, data = data, groups = rep(1, 
      length(groups_0)), index = c("i_index", "t_index"))

  Unbalanced panel: N = 20, T = 149-150, obs = 2998

  Information criterion: 7.53725

  Residuals:
        Min        1Q    Median        3Q       Max 
  -10.62978  -1.66933   0.04107   1.65432  12.33992

  1 group

  Coefficients:
                  a       b
  Group 1 -2.08433 0.67843

  Residual standard error: 2.75179 on 2976 degrees of freedom
  Mean squared error: 7.51678
  Multiple R-squared: 0.38579, Adjusted R-squared: 0.38146

S3 tv_pagfl

Code
  estim
Output
  Groups: 5

  Call:
  tv_pagfl(formula = y ~ X1, data = data, n_periods = 100, lambda = 7)
Call:
tv_pagfl(formula = y ~ X1, data = data, n_periods = 100, lambda = 7)

Balanced panel: N = 10, T = 100, obs = 1000

Convergence reached:
TRUE (1546 iterations)

Information criterion:
     IC  lambda 
0.46339 7.00000

Residuals:
     Min       1Q   Median       3Q      Max 
-3.16362 -0.65668 -0.00871  0.72063  2.79348

5 groups:
 1  2  3  4  5  6  7  8  9 10 
 1  1  2  3  4  5  5  3  5  3

Residual standard error: 1.02363 on 980 degrees of freedom
Mean squared error: 1.02686
Multiple R-squared: 0.81416, Adjusted R-squared: 0.81055

S3 grouped_tv_plm

Code
  estim
Output
  Groups: 3

  Call:
  grouped_tv_plm(formula = y ~ X1, data = data, groups = groups_0, 
      n_periods = 100)
Call:
grouped_tv_plm(formula = y ~ X1, data = data, groups = groups_0, 
    n_periods = 100)

Balanced panel: N = 10, T = 100, obs = 1000

Information criterion: 0.31399

Residuals:
     Min       1Q   Median       3Q      Max 
-3.52289 -0.64434 -0.01226  0.70892  2.87440

3 groups:
 1  2  3  4  5  6  7  8  9 10 
 1  1  2  3  1  2  2  3  2  3

Residual standard error: 1.03669 on 980 degrees of freedom
Mean squared error: 1.05323
Multiple R-squared: 0.80939, Adjusted R-squared: 0.80569

S3 tv_pagfl const coef unbalanced

Call:
tv_pagfl(formula = y ~ X + a, data = df, index = c("i_index", 
    "t_index"), lambda = 25, const_coef = "a")

Unbalanced panel: N = 10, T = 66-77, obs = 710

Convergence reached:
TRUE (522 iterations)

Information criterion:
      IC   lambda 
 0.27202 25.00000

Residuals:
     Min       1Q   Median       3Q      Max 
-3.51599 -0.64003  0.03732  0.64440  2.96996

2 groups:
 1  2  3  4  5  6  7  8  9 10 
 1  1  2  1  1  2  2  1  2  1

Constant coefficients:
                a
Group 1  0.04494
Group 2 -0.06506

Residual standard error: 1.05644 on 689 degrees of freedom
Mean squared error: 1.08306
Multiple R-squared: 0.79851, Adjusted R-squared: 0.79266
Code
  estim
Output
  Groups: 2

  Call:
  tv_pagfl(formula = y ~ X + a, data = df, index = c("i_index", 
      "t_index"), lambda = 25, const_coef = "a")

S3 grouped_tv_plm const coef unbalanced summary

Call:
grouped_tv_plm(formula = y ~ X + a, data = df, groups = groups_0, 
    index = c("i_index", "t_index"), const_coef = "a")

Unbalanced panel: N = 10, T = 66-77, obs = 710

Information criterion: 0.28854

Residuals:
     Min       1Q   Median       3Q      Max 
-2.85704 -0.63292  0.01668  0.64120  2.77544

3 groups:
 1  2  3  4  5  6  7  8  9 10 
 1  1  2  3  1  2  2  3  2  3

Constant coefficients:
                a
Group 1 -0.02146
Group 2 -0.06506
Group 3  0.12088

Residual standard error: 1.01522 on 689 degrees of freedom
Mean squared error: 1.00019
Multiple R-squared: 0.81393, Adjusted R-squared: 0.80853
Code
  estim
Output
  Groups: 3

  Call:
  grouped_tv_plm(formula = y ~ X + a, data = df, groups = groups_0, 
      index = c("i_index", "t_index"), const_coef = "a")


Try the PAGFL package in your browser

Any scripts or data that you put into this service are public.

PAGFL documentation built on April 3, 2025, 7:25 p.m.