| pcovr_est | R Documentation | 
Analyzing regression data with many and/or highly collinear predictor variables, by simultaneously reducing the predictor variables to a given number of components and regressing the criterion variables on these components. A weighting parameter value is specified that determines the extent to which both aspects influence the solution. Cross-validation (Hastie, Tibshirani & Friedman, 2001) options are included.
pcovr_est(X, Y, r, a, cross = FALSE, fold = "LeaveOneOut")
| X | Matrix containing predictor scores (observations x predictors) | 
| Y | Matrix containing criterion scores (observations x criteria) | 
| r | The desired number of components | 
| a | The desired weighting parameter value | 
| cross | Logical. If TRUE cross-validation is performed | 
| fold | Value of k when performing k-fold cross-validation. By default, leave-one-out cross-validation is performed. | 
| W | Component weights matrix (predictors x components) | 
| B | Regression weights for predictors (predictors x criteria) | 
| Rx2 | Proportion of explained variance in X | 
| Ry2 | Proportion of explained variance in Y | 
| Te | Component score matrix (observations x components) | 
| Px | Loading matrix of components (components x predictors) | 
| Py | Regression weights matrix (components x criteria) | 
| Qy2 | Cross-validation fit | 
Marlies Vervloet (marlies.vervloet@ppw.kuleuven.be)
De Jong, S., & Kiers, H. A. (1992). Principal covariates regression: Part I. Theory. Chemometrics and Intelligent Laboratory Systems , 155-164.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference and prediction. New York: Springer.
Marlies Vervloet, Henk A. Kiers, Wim Van den Noortgate, Eva Ceulemans (2015). PCovR: An R Package for Principal Covariates Regression. Journal of Statistical Software, 65(8), 1-14. URL http://www.jstatsoft.org/v65/i08/.
data(alexithymia)
X <- data.matrix(alexithymia$X)
Y <- data.matrix(alexithymia$Y)
results <- pcovr_est(X, Y, r=2, a=.90)
str(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.