Nothing
fixed_kmeans <- function(Feature, Centers) {
## distance matrix: rows = observations, cols = centres
dists <- abs(outer(Feature, Centers, FUN = "-"))
## nearest centre index for each observation
cluster <- max.col(-dists, ties.method = "first")
#d dimensional case
# # Data: matrix or data.frame of points (rows = samples, columns = features)
# # Centers: matrix or data.frame of fixed cluster centers (rows = centers, columns = features)
#
# if (!is.matrix(Data)) Data <- as.matrix(Data)
# if (!is.matrix(Centers)) Centers <- as.matrix(Centers)
#
# # Sanity checks
# if (ncol(Data) != ncol(Centers)) stop("Data and centers must have the same number of columns (features).")
#
# # Compute distances from each point to each center
# dists <- as.matrix(dist(rbind(Data, Centers)))
# dists <- dists[1:nrow(Data), (nrow(Data)+1):(nrow(Data)+nrow(Centers))]
#
# # Assign each point to the closest center
# Cls <- apply(dists, 1, which.min)
return(cluster)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.