Nothing
##' @title A function to obtain a power table with the combination of
##' various number of PDX lines and number of individuals per PDX lines per treatment based on a prior knowledge of median survival
##' @aliases PowFrailty
##' @param ctl.med.surv a numeric value of the hypothesized medial survival in the control arm. Default is 2.4.
##' @param tx.med.surv a numeric value of the hypothesized medial survival in the treatment arm. Default is 4.8.
##' @param nu shape parameter of Weibull distribution for the baseline hazard. Default is 1, i.e., constant failure rate.
##' @param tau2 variance of PDX line specific random effect. Default is 0.1.
##' @param n an integer number to specify the number of PDX lines.
##' @param m an integer number to specify the number of individuals per PDX line per treatment.
##' @param sim Number of Monte Carlo samples to be generated. Default is 1000.
##' @param censor logical value of whether a censoring distribution is considered in a data generation setting. Default is FALSE.
##' @param Ct a fixed time point when a study is designed to end for generating type 1 censoring data.
##' @param two.sided A logical value to indicate if a two-sided hypothesis testing is conducted. Default is TRUE.
##' @param alpha significance level. Default is 0.05.
##' @param fixed.effect logical value to indicate if a fixed effects only model is fitted. Default is FALSE.
##' @param ncores number of cores for parallel computation.
##' @return Object of \code{PowFrailty} with elements
##' \item{PowTab}{the estimates of statistical power across \code{n} and \code{m}.}
##' @examples
##' \donttest{
##' require(PDXpower)
##' PowTab <- PowFrailty(ctl.med.surv = 2.4, tx.med.surv = 4.8, sim = 100,
##' n = 3, m = 2, ncores = 1)
##' PowTab
##' plotpower(PowTab, ylim = c(0, 1))
##' }
##' @export
##'
PowFrailty <- function(ctl.med.surv = 2.4, tx.med.surv = 4.8, nu = 1, tau2 = 0.1,
n = NULL, m = NULL, sim = 1000, censor = FALSE, Ct = 5,
two.sided = TRUE, alpha = 0.05, fixed.effect = FALSE, ncores = NULL) {
lambda <- log(2)^(1/nu)/ctl.med.surv
beta <- log(ctl.med.surv/tx.med.surv)
PowTab <- PowerTable(n = n, m = m, beta = beta, lambda = lambda, nu = nu,
tau2 = tau2, distr = "Weibull", sim = sim,
censor = censor, two.sided = two.sided, print = "Cox-frailty",
alpha = alpha, Ct = Ct, fixed.effect = fixed.effect,
ncores = ncores)
cat("Treatment effect (beta):", beta, "\n")
cat("Scale parameter (lambda):", lambda, "\n")
cat("Shape parameter (nu):", nu, "\n")
cat("Variance of random effect (tau2):", tau2, "\n\n")
cat("Monte Carlo power estimate, calculated as the
proportion of instances where the null hypothesis
H_0: beta = 0 is rejected (n = number of PDX lines,
m = number of animals per arm per PDX line,
N = total number of animals for a given combination
of n and m,
Censoring Rate = average censoring rate across 500
Monte Carlo samples):\n")
print(PowTab)
return(PowTab)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.