cgls | R Documentation |
Conjugate gradient Least squares
cgls(Gmat, dee, niter)
Gmat |
input matrix |
dee |
right hand side |
niter |
max number of iterations |
Performs niter iterations of the CGLS algorithm on the least squares problem min norm(G*m-d). Gmat should be a sparse matrix.
X |
matrix of models |
rho |
misfit norms |
eta |
model norms |
Jonathan M. Lees<jonathan.lees@unc.edu>
Aster, R.C., C.H. Thurber, and B. Borchers, Parameter Estimation and Inverse Problems, Elsevier Academic Press, Amsterdam, 2005.
set.seed(11)
#### perfect data with no noise
n <- 5
A <- matrix(runif(n*n),nrow=n)
B <- runif(n)
### get right-hand-side (data)
trhs = as.vector( A %*% B )
Lout = cgls(A, trhs , 15)
### solution is
Lout$X[,15]
Lout$X[,15] - B
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.