Nothing
#' _PACKAGE
#' @name PEPBVS-package
#' @aliases PEPBVS-package
#' @title Bayesian variable selection using power--expected--posterior prior
#'
#' @description Performs Bayesian variable selection under normal linear
#' models for the data with the model parameters following as prior distributions
#' either the PEP or the intrinsic (a special case of the former).
#' The prior distribution on model space is the
#' uniform over all models or the uniform on model dimension (a special case
#' of the beta--binomial prior). Posterior model probabilities and marginal
#' likelihoods can be derived in closed--form expressions under this setup.
#' The selection is performed by either implementing a full enumeration
#' and evaluation of all possible models (for model spaces of
#' small--to--moderate dimension) or using the MC3 algorithm
#' (for model spaces of large dimension). Complementary functions for hypothesis testing,
#' estimation and predictions under Bayesian model averaging,
#' as well as plotting and printing the results are also available. Selected
#' models can be compared to those arising from other well--known priors.
#'
#' @references Bayarri, M., Berger, J., Forte, A. and Garcia--Donato, G. (2012)
#' Criteria for Bayesian Model Choice with Application to Variable Selection.
#' The Annals of Statistics, 40(3): 1550–1577. \doi{10.1214/12-AOS1013}
#'
#' Fouskakis, D. and Ntzoufras, I. (2022) Power--Expected--Posterior
#' Priors as Mixtures of g--Priors in Normal Linear Models.
#' Bayesian Analysis, 17(4): 1073-1099. \doi{10.1214/21-BA1288}
#'
#' Fouskakis, D. and Ntzoufras, I. (2020) Bayesian Model Averaging Using
#' Power--Expected--Posterior Priors.
#' Econometrics, 8(2): 17. \doi{10.3390/econometrics8020017}
#'
#' Garcia--Donato, G. and Forte, A. (2018) Bayesian Testing,
#' Variable Selection and Model Averaging in Linear Models using R with
#' BayesVarSel. The R Journal, 10(1): 155–174.
#' \doi{10.32614/RJ-2018-021}
#'
#' Kass, R. and Raftery, A. (1995) Bayes Factors.
#' Journal of the American Statistical Association, 90(430): 773–795.
#' \doi{10.1080/01621459.1995.10476572}
#'
#' Ley, E. and Steel, M. (2012) Mixtures of g--Priors for Bayesian Model
#' Averaging with Economic Applications.
#' Journal of Econometrics, 171(2): 251–266.
#' \doi{10.1016/j.jeconom.2012.06.009}
#'
#' Liang, F., Paulo, R., Molina, G., Clyde, M. and Berger, J. (2008)
#' Mixtures of g Priors for Bayesian Variable Selection.
#' Journal of the American Statistical Association, 103(481): 410–423.
#' \doi{10.1198/016214507000001337}
#'
#' Raftery, A., Madigan, D. and Hoeting, J. (1997) Bayesian Model Averaging
#' for Linear Regression Models.
#' Journal of the American Statistical Association, 92(437): 179–191.
#' \doi{10.1080/01621459.1997.10473615}
#'
#' Zellner, A. (1976) Bayesian and Non--Bayesian Analysis of the Regression
#' Model with Multivariate Student--t Error Terms.
#' Journal of the American Statistical Association, 71(354): 400–405.
#' \doi{10.1080/01621459.1976.10480357}
#'
#' Zellner, A. and Siow, A. (1980) Posterior Odds Ratios for Selected
#' Regression Hypotheses.
#' Trabajos de Estadistica Y de Investigacion Operativa, 31: 585-603.
#' \doi{10.1007/BF02888369}
#'
#' @importFrom Matrix rankMatrix
#' @importFrom mvtnorm rmvt
#' @importFrom Rcpp evalCpp
#' @importFrom stats var
#' @importFrom stats lm.fit
#' @importFrom stats model.frame
#' @importFrom stats model.response
#' @importFrom stats terms
#' @useDynLib PEPBVS , .registration=TRUE
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.