View source: R/lin_narpq_init.R
lin_narpq_init | R Documentation |
Starting values for the linear Poisson Network Autoregressive model of order
p
with q
covariates (PNAR(p
)).
lin_narpq_init(y, W, p, Z = NULL)
y |
A |
W |
The |
p |
The number of lags in the model. |
Z |
An |
The function computes starting values to be used in the function lin_estimnarpq
.
These are simply the ordinary least squares estimators with a correction.
If any of the the resulting coefficients is negative they become equal to 0.001.
A vector with the initial values.
Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.
Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics, 51(6): 2526–2552.
Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series Analysis, 45(4): 584–612.
Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series with the R Package PNAR. The R Journal, 15/4: 255–269.
lin_estimnarpq
data(crime)
data(crime_W)
x0 <- lin_narpq_init(crime, crime_W, p = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.