View source: R/PRS_Dis_LDpred2.R
PRS_Dis_LDpred2 | R Documentation |
Using snp_ldpred2_grid function from bigsnpr function
PRS_Dis_LDpred2(DIS_GWAS, G_reference, pcausal, h2)
DIS_GWAS |
a numeric matrix containing disease GWAS summary statistics, including SNP ID, position, β, SE(β), p-value, N, and MAF |
G_reference |
a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG) |
pcausal |
a numeric value indicating the hyper-parameter as the proportion of causal variants |
h2 |
a numeric value indicating the estimated heritability |
PRS-Dis-LDpred2 automatically sets predictive effect sizes equivalent to the prognostic effect sizes; and only need disease GWAS summary statistics and external reference genotype
A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes
Song Zhai
Prive, F., Arbel, J. & Vilhjalmsson, B.J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424-5431 (2020).
Zhai, S., Zhang, H., Mehrotra, D.V. & Shen, J. Paradigm Shift from Disease PRS to PGx PRS for Drug Response Prediction using PRS-PGx Methods (submitted).
data(PRSPGx.example); attach(PRSPGx.example) coef_est <- PRS_Dis_LDpred2(DIS_GWAS, G_reference, pcausal = 0.1, h2 = 0.4) summary(coef_est$coef.G) summary(coef_est$coef.TG)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.