| simulations | R Documentation |
The dataset is generated with the package own routines and represent 5 series of 18 years of runoff
data("simulations")
A list of three elements, containing (i) a data frame with 6570 observations of the following variables
YYYYa numeric vector, year
MMa numeric vector, month
DDa numeric vector, day
timestampPOSIXct vector of the daily runoff
deseasonalizeddeseasonalized time series
Qobsobserved runoff
r1,...,r55 simulated runoff series
(ii) a data frame with the daily fitted kappa parameters and (iii) p-values of the daily ks.test.
The data is included to illustrate the validation and visualization routines in demo("PRSim-validate").
The data has been generated with
set.seed(14); prsim( runoff[ runoff$YYYY>1999,], number_sim=5,
KStest=TRUE)
(default values for all other arguments).
Brunner, M. I., A. Bárdossy, and R. Furrer (2019). Technical note: Stochastic simulation of streamflow time series using phase randomization. Hydrology and Earth System Sciences, 23, 3175-3187, https://doi.org/10.5194/hess-23-3175-2019.
data(simulations)
names(simulations)
sim <- simulations$simulation
dim(sim)
sim$day_id <- rep(seq(1:365), times=length(unique(sim$YYYY)))
mean_obs <- aggregate(sim$Qobs, by=list(sim$day_id), FUN=mean, simplify=FALSE)
plot(unlist(mean_obs[,2]),lty=1,lwd=1,col="black", ylab="Discharge [m3/s]",
xlab="Time [d]", main="Mean hydrographs", ylim=c(0,22), type="l")
for(r in 7:(length(names(sim))-1)){
mean_hydrograph <- aggregate(sim[,r], by=list(sim$day_id), FUN=mean, simplify=FALSE)
lines(mean_hydrograph, lty=1, lwd=1, col="gray")
}
lines( mean_obs, lty=1, lwd=1, col="black")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.