View source: R/PLR_determination.R
plr_yoy_regression | R Documentation |
Automatically calculates Performance Loss Rate (PLR) using year on year regression. Note that it needs data from a power predictive model.
plr_yoy_regression( data, power_var, time_var, model, per_year = 12, return_PLR = TRUE )
data |
Result of a power predictive model |
power_var |
String name of the variable used as power |
time_var |
String name of the variable used as time |
model |
String name of the model the data was passed through |
per_year |
Time step count per year based on model. Typically 12 for MbM, 365 for DbD. |
return_PLR |
boolean; option to return PLR value, rather than the raw regression data. |
Returns PLR value and error evaluated with YoY regression, if return_PLR is false it will return the individual YoY calculations
# build var_list var_list <- plr_build_var_list(time_var = "timestamp", power_var = "power", irrad_var = "g_poa", temp_var = "mod_temp", wind_var = NA) # Clean Data test_dfc <- plr_cleaning(test_df, var_list, irrad_thresh = 100, low_power_thresh = 0.01, high_power_cutoff = NA) # Perform the power predictive modeling step test_xbx_wbw_res <- plr_xbx_model(test_dfc, var_list, by = "week", data_cutoff = 30, predict_data = NULL) # Calculate Performance Loss Rate xbx_wbw_plr <- plr_yoy_regression(test_xbx_wbw_res, power_var = 'power_var', time_var = 'time_var', model = "xbx", per_year = 52, return_PLR = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.