knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) backup_options <- options() options(width = 1000) set.seed(1991)

Bayesian Optimization seek the global maximum of any user defined function. As a simple example, let's define a simple function:

library(ggplot2) library(ParBayesianOptimization) simpleFunction <- function(x) dnorm(x,3,2)*1.5 + dnorm(x,7,1) + dnorm(x,10,2) maximized <- optim(8,simpleFunction,method = "L-BFGS-B",lower = 0, upper = 15,control = list(fnscale = -1))$par ggplot(data = data.frame(x=c(0,15)),aes(x=x)) + stat_function(fun = simpleFunction) + geom_vline(xintercept = maximized,linetype="dashed")

We can see that this function is maximized around x~7.023. We can use `bayesOpt`

to find the global maximum of this function. We just need to define the bounds, and the initial parameters we want to sample:

bounds <- list(x=c(0,15)) initGrid <- data.frame(x=c(0,5,10))

Here, we run `bayesOpt`

. The function begins by running `simpleFunction`

3 times, and then fits a Gaussian process to the results in a process called Kriging. We then calculate the `x`

which maximizes our expected improvement, and run `simpleFunction`

at this x. We then go through 1 more iteration of this:

FUN <- function(x) list(Score = simpleFunction(x)) optObj <- bayesOpt( FUN = FUN , bounds = bounds , initGrid = initGrid , acq = "ei" , iters.n = 2 , gsPoints = 25 )

Let's see how close the algorithm got to the global maximum:

```
getBestPars(optObj)
```

The process is getting pretty close! We were only about 12% shy of the global optimum:

simpleFunction(7.023)/simpleFunction(getBestPars(optObj)$x)

Let's run the process for a little longer:

optObj <- addIterations(optObj,iters.n=2,verbose=0) simpleFunction(7.023)/simpleFunction(getBestPars(optObj)$x)

We have now found an `x`

very close to the global optimum.

```
options(backup_options)
```

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.