ParallelInit_Test | R Documentation |
Data initialization function is the first step to complete parallel training
ParallelInit_Test( fn = "", icsv = NULL, dsmformula = NULL, nblock = 6, ncore = 2 )
fn |
: Name of the folder in which the soil data is stored |
icsv |
: Use df.input from the built-in dataset |
dsmformula |
:Symbolic description of a soil fitting model |
nblock |
: the number of blocks for data cutting |
ncore |
: Computes the CPU's kernel in parallel(fill in according to the computer configuration) |
Breiman, L. (2001). Random forests. Mach. Learn. 45, 5???32. Meinshausen, N. (2006) "Quantile Regression Forests", Journal of Machine Learning Research 7, 983-999 http://jmlr.csail.mit.edu/papers/v7/
############################################################################ ## Example code ## ## If you want to use test cases, load the relevant data sets ## ## Select the data set that comes with this package ## ############################################################################ library(ParallelDSM) data("df.input",package = "ParallelDSM") data("df.dem",package = "ParallelDSM") data("df.twi",package = "ParallelDSM") sampledata <- system.file("extdata", "covariate", package = "ParallelDSM") ParallelInit_Test(sampledata,df.input,dsmformula = "socd030 ~ twi + dem") #ParallelComputing(outpath = "qrfOutput",mymodels = "QRF") ############################################################################ ## Use the data file references that come with this package ## ############################################################################ # sampledatas <- system.file("extdata", "covariate", package = "ParallelDSM") ############################################################################ ## Use ParallelInit_Test functions to process the data that is loaded in ## ############################################################################ # ParallelInit_Test(sampledata,df.input,dsmformula = "socd030 ~ dem + twi") ############################################################################ ## This function is the main function that performs parallel computations ## ## The outpath field refers to the filename of the data output ## ## The mymodels field has three modes to choose from: QRF,RF and MLR ## ## 'QRF' stands for Random Forest Model Prediction Method ## ## 'RF' stands for Machine Learning Model Prediction Method ## ## 'MLR' stands for Multiple Linear Regression Prediction Model ## ## 'from' and 'to' are reserved fields that can be left unused by the user## ############################################################################ # ParallelComputing(outpath = "myoutputs",mymodels = "MLR",from=1,to=200)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.