Nothing
## ----echo = FALSE, message = FALSE, warning = FALSE---------------------------
library(PatientLevelPrediction)
## ----echo = TRUE, eval=FALSE--------------------------------------------------
# createRandomSampleSettings <- function(n = 10000,
# sampleSeed = sample(10000, 1)) {
# # add input checks
# checkIsClass(n, c("numeric", "integer"))
# checkHigher(n, 0)
# checkIsClass(sampleSeed, c("numeric", "integer"))
#
# # create list of inputs to implement function
# sampleSettings <- list(
# n = n,
# sampleSeed = sampleSeed
# )
#
# # specify the function that will implement the sampling
# attr(sampleSettings, "fun") <- "implementRandomSampleSettings"
#
# # make sure the object returned is of class "sampleSettings"
# class(sampleSettings) <- "sampleSettings"
# return(sampleSettings)
# }
## ----tidy=FALSE,eval=FALSE----------------------------------------------------
# implementRandomSampleSettings <- function(trainData, sampleSettings) {
# n <- sampleSettings$n
# sampleSeed <- sampleSettings$sampleSeed
#
# if (n > nrow(trainData$labels)) {
# stop("Sample n bigger than training population")
# }
#
# # set the seed for the randomization
# set.seed(sampleSeed)
#
# # now implement the code to do your desired sampling
#
# sampleRowIds <- sample(trainData$labels$rowId, n)
#
# sampleTrainData <- list()
#
# sampleTrainData$labels <- trainData$labels %>%
# dplyr::filter(.data$rowId %in% sampleRowIds) %>%
# dplyr::collect()
#
# sampleTrainData$folds <- trainData$folds %>%
# dplyr::filter(.data$rowId %in% sampleRowIds) %>%
# dplyr::collect()
#
# sampleTrainData$covariateData <- Andromeda::andromeda()
# sampleTrainData$covariateData$covariateRef <- trainData$covariateData$covariateRef
# sampleTrainData$covariateData$covariates <- trainData$covariateData$covariates %>% dplyr::filter(.data$rowId %in% sampleRowIds)
#
# # update metaData$populationSize
# metaData <- attr(trainData$covariateData, "metaData")
# metaData$populationSize <- n
# attr(sampleTrainData$covariateData, "metaData") <- metaData
#
# # make the cocvariateData the correct class
# class(sampleTrainData$covariateData) <- "CovariateData"
#
# # return the updated trainData
# return(sampleTrainData)
# }
## ----tidy=TRUE,eval=TRUE------------------------------------------------------
citation("PatientLevelPrediction")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.