Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----eval=FALSE, echo = FALSE, message = FALSE, warning = FALSE---------------
# library(PatientLevelPrediction)
# vignetteDataFolder <- "s:/temp/plpVignette"
# # Load all needed data if it exists on this computer:
# if (file.exists(vignetteDataFolder)) {
# plpModel <- loadPlpModel(vignetteDataFolder, "model")
# lrResults <- loadPlpModel(file.path(vignetteDataFolder, "results"))
# }
## ----eval=FALSE---------------------------------------------------------------
# set.seed(1234)
# data(simulationProfile)
# sampleSize <- 12000
# plpData <- simulatePlpData(
# plpDataSimulationProfile,
# n = sampleSize
# )
## ----eval=FALSE---------------------------------------------------------------
# populationSettings <- createStudyPopulationSettings(
# binary = TRUE,
# firstExposureOnly = FALSE,
# washoutPeriod = 0,
# removeSubjectsWithPriorOutcome = FALSE,
# priorOutcomeLookback = 99999,
# requireTimeAtRisk = FALSE,
# minTimeAtRisk = 0,
# riskWindowStart = 0,
# riskWindowEnd = 365,
# verbosity = "INFO"
# )
## ----eval=FALSE---------------------------------------------------------------
# # Use LASSO logistic regression
# modelSettings <- setLassoLogisticRegression()
## ----eval = FALSE-------------------------------------------------------------
# splitSettings <- createDefaultSplitSetting(
# testFraction = 0.2,
# type = "stratified",
# splitSeed = 1000
# )
#
# trainFractions <- seq(0.1, 0.8, 0.1) # Create eight training set fractions
## ----eval=FALSE---------------------------------------------------------------
# learningCurve <- createLearningCurve(
# plpData = plpData,
# outcomeId = 2,
# parallel = TRUE,
# cores = 4,
# modelSettings = modelSettings,
# saveDirectory = file.path(tempdir(), "learningCurve"),
# analysisId = "learningCurve",
# populationSettings = populationSettings,
# splitSettings = splitSettings,
# trainFractions = trainFractions,
# trainEvents = NULL,
# preprocessSettings = createPreprocessSettings(
# minFraction = 0.001,
# normalize = TRUE
# ),
# executeSettings = createExecuteSettings(
# runSplitData = TRUE,
# runSampleData = FALSE,
# runFeatureEngineering = FALSE,
# runPreprocessData = TRUE,
# runModelDevelopment = TRUE,
# runCovariateSummary = FALSE
# )
# )
## ----eval=FALSE---------------------------------------------------------------
# plotLearningCurve(
# learningCurve,
# metric = "AUROC",
# abscissa = "events",
# plotTitle = "Learning Curve",
# plotSubtitle = "AUROC performance"
# )
## ----eval=FALSE---------------------------------------------------------------
# # Show all demos in our package:
# demo(package = "PatientLevelPrediction")
#
# # Run the learning curve
# demo("LearningCurveDemo", package = "PatientLevelPrediction")
## ----tidy=TRUE,eval=TRUE------------------------------------------------------
citation("PatientLevelPrediction")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.