Description Usage Arguments Details Value Note Author(s) References See Also Examples
View source: R/wearingMarking.R
This function classifies wear and nonwear time status for accelerometer data by epoch-by-epoch basis.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
dataset |
The source dataset, in dataframe format, which needs to be marked. |
frame |
The size of time interval to be considered; Window 1 described in Choi et al. (2011). The default is 90. |
perMinuteCts |
The number of data rows per minute. The default is 1-sec epoch (perMinuteCts = 60). For examples: for data with 10-sec epoch, set perMinuteCts = 6; for data with 1-min epoch, set perMinuteCts = 1. |
TS |
The column name for timestamp. The default is “TimeStamp”. |
cts |
The column name for counts. The default is “axis1”. |
streamFrame |
The size of time interval that the program will look back or forward if activity is detected; Window 2 described in Choi et al. (2011). The default is the half of the frame. |
allowanceFrame |
The size of time interval that zero counts are allowed; the artifactual movement interval described in Choi et al. (2011). The default is 2. |
newcolname |
The column name for classified wear and nonwear status. The default is “wearing”. After the data is processed, a new field will be added to the original dataframe. This new field is an indicator for the wearing (“w”) or nowwearing (“nw”). |
getMinuteMarking |
Return minute data with wear and nonwear classification. If the source is not a minute dataset, the function will collapse it into minute data. The default is FALSE. |
dayStart |
Define the starting time of day. The default is the midnight, "00:00:00". It must be in the format of "hh:mm:ss". |
tz |
Local time zone, defaults to UTC. |
... |
Parameter settings that will be used in
|
A detailed description of the algorithm implemented in this function is described in Choi et al. (2011).
A data frame with the column for wear and nonwear classification indicator by epoch-by-epoch basis.
Warning: It will be very slow if accelerometer data with 1-sec epoch
for many days are directly classified. We recommend to collapse a dataset
with 1-sec epoch to 1-min epoch data using dataCollapser
and
then classify wear and nonwear status using a dataset with a larger epoch.
Leena Choi leena.choi@Vanderbilt.Edu, Cole Beck cole.beck@vumc.org, Zhouwen Liu zhouwen.liu@vumc.org, Charles E. Matthews Charles.Matthews2@nih.gov, and Maciej S. Buchowski maciej.buchowski@Vanderbilt.Edu
Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011 Feb;43(2):357-64.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | data(dataSec)
## mark data with 1-min epoch
mydata1m = dataCollapser(dataSec, TS = "TimeStamp", col = "counts", by = 60)
data1m = wearingMarking(dataset = mydata1m,
frame = 90,
perMinuteCts = 1,
TS = "TimeStamp",
cts = "counts",
streamFrame = NULL,
allowanceFrame= 2,
newcolname = "wearing")
sumVct(data1m, id="dataid")
## mark data with 1-sec epoch
## Not run:
data1s = wearingMarking(dataset = dataSec,
frame = 90,
perMinuteCts = 60,
TS = "TimeStamp",
cts = "counts",
streamFrame = NULL,
allowanceFrame= 2,
newcolname = "wearing",
getMinuteMarking = FALSE)
sumVct(data1s, id="dataid")
sumVct(data1s, id="dataid", markingString = "nw")
## End(Not run)
|
frame is 90
streamFrame is
allowanceFrame is 2
id startTimeStamp endTimeStamp days weekday start end
1 dataid 2007-08-01 07:01:00 2007-08-01 23:59:00 1 Wednesday 1 1019
2 dataid 2007-08-02 00:00:00 2007-08-02 23:59:00 2 Thursday 1020 2459
3 dataid 2007-08-03 00:00:00 2007-08-03 01:04:00 3 Friday 2460 2524
4 dataid 2007-08-03 05:52:00 2007-08-03 23:59:00 3 Friday 2812 3899
5 dataid 2007-08-04 00:00:00 2007-08-04 01:09:00 4 Saturday 3900 3969
duration
1 1019
2 1440
3 65
4 1088
5 70
frame is 90
streamFrame is
allowanceFrame is 2
id startTimeStamp endTimeStamp days weekday start end
1 dataid 2007-08-01 07:01:00 2007-08-01 23:59:59 1 Wednesday 1 61140
2 dataid 2007-08-02 00:00:00 2007-08-02 23:59:59 2 Thursday 61141 147540
3 dataid 2007-08-03 00:00:00 2007-08-03 01:04:59 3 Friday 147541 151440
4 dataid 2007-08-03 05:52:00 2007-08-03 23:59:59 3 Friday 168661 233940
5 dataid 2007-08-04 00:00:00 2007-08-04 01:09:59 4 Saturday 233941 238140
duration
1 61140
2 86400
3 3900
4 65280
5 4200
id startTimeStamp endTimeStamp days weekday start end
1 dataid 2007-08-03 01:05:00 2007-08-03 05:51:59 3 Friday 151441 168660
duration
1 17220
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.