covTtTs | R Documentation |
Stacking third/fourth derivatives of sample CGF together
to obtain a vector, which (under normality assumption on data) approaches
a normally distributed vector with zero mean and a covariance matrix.
More specifically, covTsTs
computes covariance between any two
points as the form t = t^*1_p
and s = s^*1_p
.
mt3_covTtTs(bigt, p = 1, pos.matrix = NULL)
mt4_covTtTs(bigt, p = 1, pos.matrix = NULL)
bigt |
array contains value of |
p |
dimension of multivariate random vector which data are collected. |
pos.matrix |
matrix containing information of position of any
derivatives. Default is |
Number of distinct third derivatives is
l_{T_3}= p + 2 \times \begin{pmatrix}
p\\2
\end{pmatrix} + \begin{pmatrix}
p \\ 3
\end{pmatrix}
Number of distinct fourth derivatives is
l_{T_4} = p + 3 \times \begin{pmatrix}
p\\2
\end{pmatrix} + 3 \times \begin{pmatrix}
p \\ 3
\end{pmatrix} + \begin{pmatrix}
p \\ 4
\end{pmatrix}
For each pairs of (t^*, s^*)
, covTsTt
results a covariance
matrix of size l_{T_3} \times l_{T_3}
or l_{T_4} \times l_{T_4}
.
A 2 dimensional upper triangular array, with size equals to
length of bigt
. Each element contains a covariance matrix of
derivatives sequences between any two points t = t^* 1_p
and
s = s^*1_p
.
mt3_covTsTt
returns the resulting third derivatives.
mt4_covTsTt
returns the resulting forth derivatives.
bigt <- seq(-1, 1, .5)
p <- 2
# Third derivatives
mt3_pos.matrix <- mt3_pos(p)
sTsTt3 <- mt3_covTtTs(bigt = bigt, p = p, pos.matrix = mt3_pos.matrix)
dim(sTsTt3)
sTsTt3[1:5, 1:5]
# Fourth derivatives
mt4_pos.matrix <- mt4_pos(p)
sTsTt4 <- mt4_covTtTs(bigt = bigt, p = p, pos.matrix = mt4_pos.matrix)
dim(sTsTt4)
sTsTt4[1:5, 1:5]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.