Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE,
warning = FALSE,
message = FALSE
)
## ----setup--------------------------------------------------------------------
# library(spatstat)
# library(PointedSDMs)
# library(sf)
# library(sp)
# library(ggplot2)
# library(inlabru)
# library(INLA)
## ----load_data----------------------------------------------------------------
#
# data(Koala)
# eucTrees <- Koala$eucTrees
# boundary <- Koala$boundary
#
## ----clean_data, echo = FALSE,fig.width=7, fig.height=5-----------------------
#
# proj <- "+init=epsg:27700"
#
# boundary <- as(boundary, 'sf')
# st_crs(boundary) <- proj
#
# euc <- st_as_sf(x = eucTrees,
# coords = c('E', 'N'),
# crs = proj)
#
# euc$food <- euc$FOOD/1000
# euc <- euc[unlist(st_intersects(boundary, euc)),]
#
# class(trees)
#
# mesh = inla.mesh.2d(boundary = boundary,
# max.edge = c(10, 20),
# offset = c(15,20),
# cutoff = 2)
# mesh$crs <- st_crs(proj)
#
# ggplot() +
# geom_sf(data = st_boundary(boundary)) +
# geom_sf(data = euc, aes(color = koala)) +
# ggtitle('Plot showing number of koalas at each site')
#
# ggplot() +
# geom_sf(data = st_boundary(boundary)) +
# geom_sf(data = euc, aes(color = food)) +
# ggtitle('Plot showing the food value index at each site')
#
#
## ----points_only,fig.width=7, fig.height=5------------------------------------
#
# points <- startISDM(euc, Boundary = boundary,
# Projection = proj,
# Mesh = mesh)
#
# points$specifySpatial(sharedSpatial = TRUE,
# prior.range = c(120, 0.1),
# prior.sigma = c(1, 0.1))
#
# pointsModel <- fitISDM(points, options = list(control.inla = list(int.strategy = 'eb')))
#
# pointsPredictions <- predict(pointsModel, mask = boundary,
# mesh = mesh, predictor = TRUE)
#
# pointsPlot <- plot(pointsPredictions, variable = 'mean',
# plot = FALSE)
#
# pointsPlot$predictions$predictions$mean +
# gg(euc)
#
## ----include_marks,fig.width=7, fig.height=5----------------------------------
#
# marks <- startMarks(euc, Boundary = boundary,
# Projection = proj,
# markNames = c('food', 'koala'),
# markFamily = c('gamma', 'poisson'),
# Mesh = mesh)
#
# marks$specifySpatial(sharedSpatial = TRUE,
# prior.range = c(120, 0.1),
# prior.sigma = c(1, 0.1))
#
# marks$specifySpatial(Mark = 'koala',
# prior.range = c(120, 0.1),
# prior.sigma = c(1, 0.1))
#
# marks$specifySpatial(Mark = 'food',
# prior.range = c(60, 0.1),
# prior.sigma = c(1, 0.1))
#
# marksModel <- fitISDM(marks, options = list(control.inla = list(int.strategy = 'eb'),
# safe = TRUE))
#
# foodPredictions <- predict(marksModel, mask = boundary,
# mesh = mesh, marks = 'food', spatial = TRUE,
# fun = 'exp')
#
# koalaPredictions <- predict(marksModel, mask = boundary,
# mesh = mesh, marks = 'koala', spatial = TRUE)
#
# plot(foodPredictions, variable = c('mean', 'sd'))
# plot(koalaPredictions, variable = c('mean', 'sd'))
## ----marks_add_scaling,fig.width=7, fig.height=5------------------------------
#
# marks2 <- startMarks(euc, Boundary = boundary,
# Projection = proj,
# markNames = 'food',
# markFamily = 'gaussian',
# Mesh = mesh)
#
# marks2$updateFormula(Mark = 'food',
# newFormula = ~ exp(food_intercept + (shared_spatial + 1e-6)*scaling + food_spatial))
#
# marks2$changeComponents(addComponent = 'scaling(1)')
#
# marks2$specifySpatial(sharedSpatial = TRUE,
# prior.sigma = c(1, 0.01),
# prior.range = c(120, 0.01))
#
# marks2$specifySpatial(Mark = 'food',
# prior.sigma = c(1, 0.01),
# prior.range = c(120, 0.01))
#
# marksModel2 <- fitISDM(marks2, options = list(control.inla = list(int.strategy = 'eb'),
# bru_max_iter = 2, safe = TRUE))
#
# predsMarks2 <- predict(marksModel2, mask = boundary, mesh = mesh,
# formula = ~ (food_intercept + (shared_spatial + 1e-6)*scaling + food_spatial))
#
# plot(predsMarks2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.