Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## ----Install PointedSDMs, warning = FALSE, message = FALSE, eval = TRUE-------
##Install if need be
library(PointedSDMs)
## ----startISDM----------------------------------------------------------------
#
# args(startISDM)
#
## ----startSpecies-------------------------------------------------------------
#
# args(startSpecies)
#
## ----fitISDM------------------------------------------------------------------
#
# args(fitISDM)
#
## ----args for blockedCV-------------------------------------------------------
#
# args(blockedCV)
#
## ----datasetOut---------------------------------------------------------------
#
# args(datasetOut)
#
## ----Load packages, message=FALSE, warning=FALSE------------------------------
#
# library(INLA)
# library(inlabru)
# library(USAboundaries)
# library(sf)
# library(blockCV)
# library(ggmap)
# library(sn)
# library(terra)
# library(RColorBrewer)
# library(cowplot)
# library(knitr)
# library(kableExtra)
# library(dplyr)
# library(spocc)
#
## ----Map of PA----------------------------------------------------------------
#
# proj <- "+proj=utm +zone=17 +datum=WGS84 +units=km"
#
# PA <- USAboundaries::us_states(states = "Pennsylvania")
#
# PA <- st_transform(PA, proj)
#
## ----get_eBird----------------------------------------------------------------
#
# species <- c('caerulescens', 'fusca', 'magnolia')
#
# dataSets <- list()
# for (bird in species) {
#
# raw_data <- spocc::occ(
# query = paste('Setophaga', bird),
# from = "gbif",
# date = c("2005-01-01", "2005-12-31"),
# geometry = st_bbox(st_transform(PA,
# '+proj=longlat +datum=WGS84 +no_defs')))$gbif
#
# rows <- grep("EBIRD", raw_data$data[[paste0('Setophaga_', bird)]]$collectionCode)
#
# raw_data <- data.frame(raw_data$data[[1]][rows, ])
# raw_data$Species_name <- rep(bird, nrow(raw_data))
#
# data_sp <- st_as_sf(
# x = raw_data[, names(raw_data) %in% c("longitude", "latitude", 'Species_name')],
# coords = c('longitude', 'latitude'),
# crs = '+proj=longlat +datum=WGS84 +no_defs')
# data_sp <- st_transform(data_sp, proj)
#
# dataSets[[paste0('eBird_', bird)]] <- data_sp[unlist(st_intersects(PA, data_sp)),]
#
# }
#
## ----Load points--------------------------------------------------------------
#
# data('SetophagaData')
# dataSets[['BBA']] <- SetophagaData$BBA
# dataSets[['BBS']] <- SetophagaData$BBS
#
## ----Covariate data, message = FALSE, warning = FALSE-------------------------
#
# covariates <- scale(terra::rast(system.file('extdata/SetophagaCovariates.tif',
# package = "PointedSDMs")))
# names(covariates) <- c('elevation', 'canopy')
#
# plot(covariates)
#
## ----Mesh, warning = FALSE, message = FALSE, fig.width=8, fig.height=5--------
#
# mesh <- inla.mesh.2d(boundary = inla.sp2segment(PA),
# cutoff = 0.2 * 5,
# max.edge = c(0.1, 0.24) * 40, #120
# offset = c(0.1, 0.4) * 100,
# crs = st_crs(proj))
#
# mesh_plot <- ggplot() +
# gg(mesh) +
# ggtitle('Plot of mesh') +
# theme_bw() +
# theme(plot.title = element_text(hjust = 0.5))
# mesh_plot
#
## ----modelOptions-------------------------------------------------------------
#
# modelOptions <- list(control.inla =
# list(int.strategy = 'eb',
# diagonal = 0.1),
# verbose = TRUE,
# safe = TRUE)
#
## ----Model prep, warning = FALSE, message = FALSE-----------------------------
#
# caerulescensData <- dataSets[c(1,4,5)]
#
# caerulescensModel <- startISDM(caerulescensData, Boundary = PA,
# Projection = proj, Mesh = mesh,
# responsePA = 'NPres', responseCounts = 'Counts',
# spatialCovariates = covariates,
# Formulas =
# list(
# covariateFormula = ~ elevation + I(elevation^2) + canopy + I(canopy^2))
# )
#
## ----help, eval = FALSE-------------------------------------------------------
#
# caerulescensModel$help()
#
## ----dataset plot, fig.width=8, fig.height=5----------------------------------
#
# caerulescensModel$plot() +
# theme_bw() +
# ggtitle('Plot of the datasets') +
# theme(plot.title = element_text(hjust = 0.5))
#
## ----specifySpatial-----------------------------------------------------------
#
# caerulescensModel$specifySpatial(sharedSpatial = TRUE,
# prior.sigma = c(1, 0.1),
# prior.range = c(15, 0.1))
#
## ----bias fields, eval = FALSE------------------------------------------------
#
# caerulescensModel$addBias(datasetNames = 'eBird_caerulescens')
#
# caerulescensModel$specifySpatial(Bias = TRUE,
# prior.sigma = c(1, 0.1),
# prior.range = c(15, 0.1))
#
## ----priorsFixed--------------------------------------------------------------
#
# caerulescensModel$priorsFixed(Effect = 'Intercept',
# mean.linear = 0,
# prec.linear = 0.1)
#
## ----changeComponents---------------------------------------------------------
#
# caerulescensModel$changeComponents()
#
## ----specifyRandom------------------------------------------------------------
#
# caerulescensModel$specifyRandom(copyModel = list(beta = list(fixed = TRUE)))
#
# caerulescensModel$changeComponents()
#
## ----fitISDM run--------------------------------------------------------------
#
# caerulescensEst <- fitISDM(data = caerulescensModel,
# options = modelOptions)
#
## ----predict and plot---------------------------------------------------------
#
# caerulescensPredictions <- predict(caerulescensEst,
# data = fm_pixels(mesh = mesh,
# mask = PA),
# spatial = TRUE,
# n.samples = 1000)
#
# plot(caerulescensPredictions, variable = c('mean', 'sd'))
#
#
## ----startSpeciesStart--------------------------------------------------------
#
# speciesModel <- startSpecies(dataSets, Boundary = PA, pointsSpatial = NULL,
# Projection = proj, Mesh = mesh,
# responsePA = 'NPres', responseCounts = 'Counts',
# spatialCovariates = covariates,
# speciesName = 'Species_name')
#
## ----species help, eval = FALSE-----------------------------------------------
#
# speciesModel$help()
#
## ----specifySpecies-----------------------------------------------------------
#
# speciesModel$specifySpatial(Species = TRUE,
# prior.sigma = c(1, 0.1),
# prior.range = c(15, 0.1))
#
# speciesModel$priorsFixed(Effect = 'Intercept',
# mean.linear = 0,
# prec.linear = 0.1)
#
# speciesModel$specifyRandom(speciesGroup = list(model = "iid",
# hyper = list(prec = list(prior = "pc.prec",
# param = c(0.1, 0.1)))),
# speciesIntercepts = list(prior = 'pc.prec',
# param = c(0.1, 0.1)))
#
#
## ----fitSpecies---------------------------------------------------------------
#
# speciesEst <- fitISDM(data = speciesModel,
# options = modelOptions)
#
# summary(speciesEst)
#
## ----predictionsSpecies-------------------------------------------------------
#
# speciesPredictions <- predict(speciesEst,
# data = fm_pixels(mesh = mesh,
# mask = PA),
# spatial = TRUE,
# n.samples = 1000)
#
# plot(speciesPredictions)
#
## ----spatialBlock, warning = FALSE, message = FALSE, fig.width=8, fig.height=5----
#
# caerulescensModel$spatialBlock(k = 2, rows_cols = c(2, 2), plot = TRUE) + theme_bw()
#
## ----blockedCV, warning = FALSE, eval = FALSE---------------------------------
#
# spatialBlocked <- blockedCV(data = caerulescensModel,
# options = modelOptions)
#
## ----print spatialBlocked-----------------------------------------------------
#
# spatialBlocked
#
## ----No fields model, message = FALSE, warning = FALSE------------------------
#
# no_fields <- startISDM(dataSets,
# pointsSpatial = NULL,
# Projection = proj, Mesh = mesh,
# responsePA = 'NPres', responseCounts = 'Counts',
# spatialCovariates = covariates)
#
# no_fields$spatialBlock(k = 2, rows_cols = c(2, 2), plot = TRUE) + theme_bw()
#
## ----spatialBlocked_no_fields, eval = FALSE-----------------------------------
#
# spatialBlocked_no_fields <- blockedCV(data = no_fields,
# options = modelOptions)
#
## ----print spatialBlocked_no_fields-------------------------------------------
#
# spatialBlocked_no_fields
#
## ----Summary of model, message = FALSE, warning = FALSE, echo = TRUE,fig.width=7, fig.height=5----
#
# results_plot <- joint_model$summary.fixed %>%
# mutate(species = gsub('_.*$','',
# row.names(joint_model$summary.fixed))) %>%
# mutate(coefficient = row.names(joint_model$summary.fixed))
#
#
# coefficient_plot <- ggplot(results_plot, aes(x = coefficient, y = mean)) +
# geom_hline(yintercept = 0, colour = grey(0.25), lty = 2) +
# geom_point(aes(x = coefficient,
# y = mean)) +
# geom_linerange(aes(x = coefficient,
# ymin = `0.025quant`,
# ymax = `0.975quant`,
# col = species),
# lwd = 1) +
# theme_bw() +
# scale_colour_manual(values = c('#003f5c', '#bc5090','#ffa600')) +
# theme(legend.position="bottom",
# plot.title = element_text(hjust = 0.5)) +
# ggtitle("95% credibility intervals of the fixed effects\n
# for the three studied species") +
# labs(x = 'Variable', y = 'Coefficient value') +
# coord_flip()
#
# coefficient_plot
#
## ----Leave one out, message = FALSE, warning = FALSE, eval = FALSE------------
#
# dataset_out <- datasetOut(model = caerulescensEst,
# dataset = "BBA",
# predictions = TRUE)
#
# dataset_out
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.