Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## ----setup, warning = FALSE, message = FALSE----------------------------------
#
# library(PointedSDMs)
# library(terra)
# library(ggpolypath)
# library(INLA)
# library(ggplot2)
#
## ----safe, include = FALSE----------------------------------------------------
#
# bru_options_set(inla.mode = "experimental")
#
## ----load data----------------------------------------------------------------
#
# data('SolitaryTinamou')
# projection <- "+proj=longlat +ellps=WGS84"
#
# covariates <- terra::rast(system.file('extdata/SolitaryTinamouCovariates.tif',
# package = "PointedSDMs"))
#
# datasets <- SolitaryTinamou$datasets
# region <- SolitaryTinamou$region
# mesh <- SolitaryTinamou$mesh
#
## ----look at data-------------------------------------------------------------
#
# str(datasets)
# class(region)
#
## ----covariates, fig.width=8, fig.height=5------------------------------------
#
# covariates <- scale(covariates)
# crs(covariates) <- projection
# plot(covariates)
#
## ----mesh, fig.width=8, fig.height=5------------------------------------------
#
# ggplot() + gg(mesh)
#
## ----set up base model, warning = FALSE, message = FALSE----------------------
#
# base <- startISDM(datasets, spatialCovariates = covariates,
# Projection = projection, responsePA = 'Present', Offset = 'area',
# Mesh = mesh, pointsSpatial = NULL)
#
## ----data, fig.width=8, fig.height=5------------------------------------------
#
# base$plot(Boundary = FALSE) +
# geom_sf(data = st_boundary(region)) +
# ggtitle('Plot of the species locations by dataset')
#
## ----priorsFixed--------------------------------------------------------------
#
# base$priorsFixed(Effect = 'Forest', mean.linear = 0.5, prec.linear = 0.01)
#
## ----run base model, warning = FALSE, message = FALSE-------------------------
#
# baseModel <- fitISDM(data = base)
# summary(baseModel)
#
## ----set up model with fields, warning = FALSE, message = FALSE---------------
#
# fields <- startISDM(datasets, spatialCovariates = covariates,
# Projection = projection, Mesh = mesh, responsePA = 'Present',
# pointsIntercept = FALSE)
#
## ----specifySpatial-----------------------------------------------------------
#
# fields$specifySpatial(sharedSpatial = TRUE, prior.range = c(50,0.01),
# prior.sigma = c(0.1, 0.01))
#
## ----addBias------------------------------------------------------------------
#
# fields$addBias('eBird')
#
## ----run fields model, warning = FALSE, message = FALSE-----------------------
#
# fieldsModel <- fitISDM(fields, options = list(control.inla = list(int.strategy = 'eb',
# diagonal = 0.05)))
# summary(fieldsModel)
#
## ----correlate model----------------------------------------------------------
#
# correlate <- startISDM(datasets,
# Projection = projection, Mesh = mesh,
# responsePA = 'Present',
# pointsSpatial = 'correlate')
#
# correlate$specifySpatial(sharedSpatial = TRUE, prior.range = c(50,0.01),
# prior.sigma = c(0.1, 0.01))
#
# correlate$changeComponents()
#
## ----run correlate model------------------------------------------------------
#
# correlateModel <- fitISDM(correlate,
# options = list(control.inla =
# list(int.strategy = 'eb',
# diagonal = 0.1)))
# summary(correlateModel)
#
## ----predict spatial, warning = FALSE, message = FALSE------------------------
#
# spatial_predictions <- predict(fieldsModel, mesh = mesh,
# mask = region,
# spatial = TRUE,
# fun = 'linear')
#
## ----spatial, fig.width=8, fig.height=5---------------------------------------
#
# plot(spatial_predictions, variable = c('mean', 'sd'))
#
## ----predict bias, warning = FALSE, message = FALSE---------------------------
#
# bias_predictions <- predict(fieldsModel,
# mesh = mesh,
# mask = region,
# bias = TRUE,
# fun = 'linear')
#
## ----bias, fig.width=8, fig.height=5------------------------------------------
#
# plot(bias_predictions)
#
## ----datasetOut, warning = FALSE, message = FALSE-----------------------------
#
# eBird_out <- datasetOut(model = fieldsModel, dataset = 'eBird')
#
## ----print datasetOut---------------------------------------------------------
#
# eBird_out
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.