Description Usage Arguments Details Value Author(s) References See Also Examples
Unbiased Rescaled Noise Variance (URNV) corrects for a bias of Rescaled Noise Variance.
| 1 | noise_urnv(estimator)
 | 
| estimator | Vector of (time, price) observations for market asset when external market data is used. | 
- Convergence speed: m^{1/2} (m - number of observation)
- Accounts for additive noise: yes
- Accounts for finite price jumps: no
- Accounts for time dependence in noise: no
- Accounts for endogenous effects in noise: no
a numeric vector of the same length as input data.
Kostin Andrey <andrey.kostin@portfolioeffect.com>
L. Zhang, P. A. Mykland, and Y. Ait-Sahalia, "A tale of two time scales: Determining integrated volatility with noisy high-frequency data," Journal of the American Statistical Association, vol. 100, No. 472, pp. 1394-1411, December 2005.
noise_rnv noise_acnv noise_uznv
| 1 2 3 4 5 6 7 8 9 10 |  
## Not run: 
data(spy.data) 
estimator=estimator_create(priceData=spy.data)
estimator_settings(estimator,
				   inputSamplingInterval = '10s',
				   resultsSamplingInterval = '10s')
util_plot2d(noise_urnv(estimator),title="URNV")
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.