Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
#install.packages("devtools")
#devtools::install_github("lanshui1998/PoweREST")
#----or
#install.packages("PoweREST")
library(PoweREST)
## ----eval=FALSE---------------------------------------------------------------
# #load ST data in R by Seurat:
# #here we load the pancreatic cancer data which is available on GitHub page
# three_areas <- readRDS("your path to/GSE233293_scMC.all.3areas.final")
# Idents(three_areas)
# #Levels: Peri Juxta Epi
# SeuratObject_splitlist<-Seurat::SplitObject(three_areas, split.by = "ident")
#
# #split the ST data into three areas
# for (i in 1:length(SeuratObject_splitlist)) {
# SeuratObject_splitlist[[i]][['Condition']]<-ifelse(SeuratObject_splitlist[[i]][['Type']]=='LG','LG','HR')
# }
#
# for (i in 1:length(SeuratObject_splitlist)) {
# Seurat::Idents(SeuratObject_splitlist[[i]])<-"Condition"
# }
#
# # Take Peri area for example for downstream analysis
# Peri<-SeuratObject_splitlist$Peri
## ----eval=FALSE---------------------------------------------------------------
# result<-PoweREST(Peri,cond='Condition',replicates=5,spots_num=80,iteration=100)
#
# #---For test, try this first
# #PoweREST(Peri,cond='Condition',replicates=5,spots_num=80,iteration=2)
# #---To get faster, try this
# #devtools::install_github('immunogenomics/presto')
## ----eval=FALSE---------------------------------------------------------------
# # For example, use the Student's t-test
# result2<-PoweREST(Peri,cond='Condition',replicates=5,spots_num=80,iteration=100,test.use="t")
## ----eval=FALSE---------------------------------------------------------------
# PoweREST_gene(Peri,cond='Condition',replicates=5,spots_num=80,gene_name='MUC1',pvalue=0.00001)
## ----eval=FALSE---------------------------------------------------------------
# PoweREST_subset(Peri,cond='Condition',replicates=5,spots_num=80,pvalue=0.05,logfc.threshold = 0.1,min.pct = 0.01)
## ----eval=FALSE---------------------------------------------------------------
# #Fit the power surface for sample size=5 in each arm
# b<-fit_powerest(result$power,result$avg_logFC,result$avg_PCT)
## ----eval=FALSE---------------------------------------------------------------
# pred <- pred_powerest(b,xlim= c(0,6),ylim=c(0,1))
# vis_powerest(pred,theta=-30,phi=30,color='heat',ticktype = "detailed",xlim=c(0,6),nticks=5)
## ----eval=FALSE---------------------------------------------------------------
# plotly_powerest(pred,fig_title='Power estimation result')
## ----eval=FALSE---------------------------------------------------------------
# # Fit the local power surface of avg_log2FC_abs between 1 and 2
# avg_log2FC_abs_1_2<-dplyr::filter(power,avg_log2FC_abs>1 & avg_log2FC_abs<2)
# # Fit the model
# bst<-fit_XGBoost(power$power,avg_log2FC=power$avg_log2FC_abs,avg_PCT=power$mean_pct,replicates=power$sample_size)
# # Make predictions
# pred<-pred_XGBoost(bst,n.grid=30,xlim=c(0,1.5),ylim=c(0,0.1),replicates=3)
## ----eval=FALSE---------------------------------------------------------------
# #2D version
# vis_XGBoost(pred,view='2D',legend_name='Power',xlab='avg_log2FC_abs',ylab='mean_pct')
# #3D version
# vis_XGBoost(pred,view='3D',legend_name='Power',xlab='avg_log2FC_abs',ylab='mean_pct')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.