n.ESTMAS | R Documentation |
The n.ESTMAS function determines the sample size with its corresponding allocation by stratum, using a stratified sampling strategy, where a simple random sampling design with no replacement (ESTMAS) is applied in each stratum; taking into account whether the parameter of interest is the average (or total) or a proportion.
n.ESTMAS(Nh,Sh,Ch,Ph,Emax.a,Nc=0.95,parameter="mean",Asig="Optima")
# n.ESTMAS(Nh,Sh,Ch,Emax.a,Nc=0.95,parameter="mean",Asig="Optima")
# n.ESTMAS(Nh,Ph,Ch,Emax.a,Nc=0.95,parameter="prop",Asig="Optima")
# n.ESTMAS(Nh,Sh,Emax.a,Nc=0.95,parameter="mean",Asig="Neyman")
# n.ESTMAS(Nh,Ph,Emax.a,Nc=0.95,parameter="prop",Asig="Neyman")
# n.ESTMAS(Nh,Sh,Emax.a,Nc=0.95,parameter="mean",Asig="Proportional")
# n.ESTMAS(Nh,Ph,Emax.a,Nc=0.95,parameter="prop",Asig="Proportional")
Nh |
Numerical vector with the respective sizes of strata. |
Sh |
Numerical vector with the respective standard deviations of the variable of interest of each stratum. This argument is necessary only if the parameter of interest is the mean. |
Ch |
Numerical vector with the costs of sampling an element within each stratum. This argument is only necessary if the allocation by stratum is the optimal allocation. |
Ph |
Numerical vector with estimated proportions within each stratum. |
Emax.a |
Absolute maximum error. |
parameter |
Type of parameter to be estimated, either the mean or a proportion ("mean", "prop"). |
Nc |
Confidence level (between 0 and 1) that you want to set. |
Asig |
Assignment by stratum ("Optima", "Neyman" or "Proportional") |
This function returns the sample size and the allocation by stratum, through the conditions established in the arguments.
Jorge Alberto Barón Cárdenas <jorgeabaron@correo.unicordoba.edu.co>
Guillermo Martínez Flórez <guillermomartinez@correo.unicordoba.edu.co>
Särndal, C. E., J. H. Wretman, and C. M. Cassel (1992). Foundations of Inference in Survey Sampling. Wiley New York.
Cochran, W. G. (1977). Sampling Techniques, 3ra ed. New York: Wiley.
Thompson, S. K. (1945). Wiley Series in Probability and Statistics, Sampling, 1ra ed. United States of America.
Nc<-0.95
E<-0.3
Nh<-c(400,220,380)
Sh<-sqrt(c(0.7521,1.4366,1.1361))
Ph<-c(0.4,0.2,0.6)
Ch<-c(1000,1200,1500)
# Optimal Assignment
n.ESTMAS(Nh=Nh,Sh=Sh,Ch=Ch,E=E,Nc=0.95,parameter="mean",Asig="Optima")
n.ESTMAS(Nh=Nh,Ph=Ph,Ch=Ch,E=E,Nc=0.95,parameter="prop",Asig="Optima")
# Neyman Assignment
n.ESTMAS(Nh=Nh,Sh=Sh,E=E,Nc=0.95,parameter="mean",Asig="Neyman")
n.ESTMAS(Nh=Nh,Ph=Ph,E=E,Nc=0.95,parameter="prop",Asig="Neyman")
# Proportional Assignment
n.ESTMAS(Nh=Nh,Sh=Sh,E=E,Nc=0.95,parameter="mean",Asig="Proportional")
n.ESTMAS(Nh=Nh,Ph=Ph,E=E,Nc=0.95,parameter="prop",Asig="Proportional")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.