| lasso_fista | R Documentation | 
the function carries out the Lasso regression using fixed step using FISTA algorithm.
lasso_fista(data,y,x,lambda,max_step=10000,type="Gaussian",image=TRUE,ini=0.5,tol=10^-7)
| data | name of the dataset | 
| y | name of the dependent variables | 
| x | name of the independent variable | 
| lambda | a vector of lambda-value to be evaluated in the regression | 
| max_step | maximum number of steps | 
| type | type of response variable, by default, it is 'Gaussian' for continuos response and can be modified as 'Binomial' for binary response | 
| image | logical, if TRUE, the evolution of errors in term of lambda values will be plotted | 
| ini | initial value for the coefficients | 
| tol | tolerance for convergence, it is 10^-7 by default | 
lasso_fista
A list containing:
coefficients: A matrix where each column represents the estimated regression coefficients for a different lambda value.
error_evolution: A numeric vector tracking the error at certain step.
num_steps: An integer vector indicating the number of steps in which errors are calculated.
library("glmnet")
data("QuickStartExample")
test<-as.data.frame(cbind(QuickStartExample$y,QuickStartExample$x))
lasso_fista(test,"V1",colnames(test)[2:21],lambda=0.1,image=TRUE,max_step=1000)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.