lasso_fista | R Documentation |
the function carries out the Lasso regression using fixed step using FISTA algorithm.
lasso_fista(data,y,x,lambda,max_step=10000,type="Gaussian",image=TRUE,ini=0.5,tol=10^-7)
data |
name of the dataset |
y |
name of the dependent variables |
x |
name of the independent variable |
lambda |
a vector of lambda-value to be evaluated in the regression |
max_step |
maximum number of steps |
type |
type of response variable, by default, it is 'Gaussian' for continuos response and can be modified as 'Binomial' for binary response |
image |
logical, if TRUE, the evolution of errors in term of lambda values will be plotted |
ini |
initial value for the coefficients |
tol |
tolerance for convergence, it is 10^-7 by default |
lasso_fista
A list containing:
coefficients
: A matrix where each column represents the estimated regression coefficients for a different lambda value.
error_evolution
: A numeric vector tracking the error at certain step.
num_steps
: An integer vector indicating the number of steps in which errors are calculated.
library("glmnet")
data("QuickStartExample")
test<-as.data.frame(cbind(QuickStartExample$y,QuickStartExample$x))
lasso_fista(test,"V1",colnames(test)[2:21],lambda=0.1,image=TRUE,max_step=1000)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.