View source: R/process-plate.R
process_plate | R Documentation |
Depending on the normalisation_type
argument, the function will compute the RAU or nMFI values for each analyte in the plate.
RAU is the default normalisation type.
The behaviour of the function, in the case of RAU normalisation type, can be summarised as follows:
Adjust blanks if not already done.
Fit a model to each analyte using standard curve samples.
Compute RAU values for each analyte using the corresponding model.
Aggregate computed RAU values into a single data frame.
Save the computed RAU values to a CSV file.
More info about the RAU normalisation can be found in
create_standard_curve_model_analyte
function documentation create_standard_curve_model_analyte or in the Model reference Model.
In case the normalisation type is nMFI, the function will:
Adjust blanks if not already done.
Compute nMFI values for each analyte using the target dilution.
Aggregate computed nMFI values into a single data frame.
Save the computed nMFI values to a CSV file.
More info about the nMFI normalisation can be found in get_nmfi
function documentation get_nmfi.
process_plate(
plate,
filename = NULL,
output_dir = "normalised_data",
write_output = TRUE,
normalisation_type = "RAU",
data_type = "Median",
include_raw_mfi = TRUE,
adjust_blanks = FALSE,
verbose = TRUE,
reference_dilution = 1/400,
...
)
plate |
( |
filename |
( If the passed filename does not contain |
output_dir |
( |
write_output |
( |
normalisation_type |
( |
data_type |
( |
include_raw_mfi |
( |
adjust_blanks |
( |
verbose |
( |
reference_dilution |
( |
... |
Additional arguments to be passed to the fit model function ( |
a data frame with normalised values
plate_file <- system.file("extdata", "CovidOISExPONTENT_CO_reduced.csv", package = "PvSTATEM")
# a plate file with reduced number of analytes to speed up the computation
layout_file <- system.file("extdata", "CovidOISExPONTENT_CO_layout.xlsx", package = "PvSTATEM")
plate <- read_luminex_data(plate_file, layout_file, verbose = FALSE)
example_dir <- tempdir(check = TRUE) # a temporary directory
# create and save dataframe with computed dilutions
process_plate(plate, output_dir = example_dir)
# process plate without adjusting blanks and save the output to a file with a custom name
process_plate(plate,
filename = "plate_without_blanks_adjusted.csv",
output_dir = example_dir, adjust_blanks = FALSE
)
# nMFI normalisation
process_plate(plate,
output_dir = example_dir,
normalisation_type = "nMFI", reference_dilution = 1 / 400
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.