More documenation can be found at https://bitbucket.org/Floooo/pythoninr.
Python >= 2.7.0 R >= 2.15.0
R-packages: - pack
Python headers
On Debian and Debian-based Linux distributions (including Ubuntu and other derivatives) the "Python Development Headers" can be installed by typing the following into the terminal.
apt-get install python-dev
For installation on Red Hat Enterprise Linux , Fedora, and other Red Hat Linux-based distributions, use the following:
yum install python-devel
There are no additional dependencies on Windows. (One obviously needs to have R and Python installed.)
install.packages("PythonInR")
# or via devtools
require(devtools)
install_bitbucket("Floooo/PythonInR")
Since the Windows version of PythonInR uses explicit linkage one can switch between different Python versions without recompiling the package. This flexibility comes at the price of additional configuration at the startup. Which results in a different behavior for the static (Linux default) and the explicit linked (Windows default) version. Where as the static linked version automatically connects, when the package get’s loaded, the explicitly linked version needs to be connected manually.
To enable automatic connection for the explicitly linked version the environment variable
PYTHON_EXE has to be set. You can put your Python path into your .Renviron
or
.Rprofile
file (Setting up a .Renviron file).
Due to api changes in Python 3 the function execfile
is no longer available.
The PythonInR package provides a execfile
function following the typical workaround.
def execfile(filename):
exec(compile(open(filename, 'rb').read(), filename, 'exec'), globals())
To allow a nearly one to one conversion from R to Python, PythonInR provides Python classes for vectors, matrices and data.frames which allow an easy conversion from R to Python and back. The names of the classes are PrVector, PrMatrix and PrDataFrame.
| R | length (n) | Python | | ------------------ | ---------- | ----------- | | NULL | | None | | logical | 1 | boolean | | integer | 1 | integer | | numeric | 1 | double | | character | 1 | unicode | | logical | n > 1 | PrVector | | integer | n > 1 | PrVector | | numeric | n > 1 | PrVector | | character | n > 1 | PrVector | | list without names | n > 0 | list | | list with names | n > 0 | dict | | matrix | n > 0 | PrMatrix | | data.frame | n > 0 | PrDataFrame |
PythonInR is designed in way that the conversion of types can easily be added or changed. This is done by utilizing polymorphism: if pySet is called, pySet calls pySetPoly which can be easily modified by the user. The following example shows how pySetPoly can be used to modify the behavior of pySet on the example of integer vectors.
The predefined type casting for integer vectors at an R level looks like the following:
setMethod("pySetPoly", signature(key="character", value = "integer"),
function(key, value){
success <- pySetSimple(key, list(vector=unname(value), names=names(value), rClass=class(value)))
cmd <- sprintf("%s = PythonInR.prVector(%s['vector'], %s['names'], %s['rClass'])",
key, key, key, key)
pyExec(cmd)
})
To change the predefined behavior one can simply use setMethod again.
pySetPoly <- PythonInR:::pySetPoly
showMethods("pySetPoly")
pySet("x", 1:3)
pyPrint(x)
pyType("x")
setMethod("pySetPoly",
signature(key="character", value = "integer"),
function(key, value){
PythonInR:::pySetSimple(key, value)
})
pySet("x", 1:3)
pyPrint(x)
pyType("x")
NOTE PythonInR:::pySetSimple The functions pySetSimple and pySetPoly shouldn't be used outside the function pySet since they do not check if R is connected to Python. If R is not connected to Python this can yield to segfault !
NOTE (named lists):
When executing pySet("x", list(b=3, a=2))
and pyGet("x")
the order
of the elements in x will change. This is not a special behavior of PythonInR
but the default behavior of Python for dictionaries.
NOTE (matrix): Matrices are either transformed to an object of the class PrMatrix or to an numpy array (if the option useNumpy is set to TRUE).
NOTE (data.frame): Data frames are either transformed to an object of the class PrDataFrame or to a pandas DataFrame (if the option usePandas is set to TRUE).
| Python | R | simplify | | ----------- | -------------------- | ------------ | | None | NULL | TRUE / FALSE | | boolean | logical | TRUE / FALSE | | integer | integer | TRUE / FALSE | | double | numeric | TRUE / FALSE | | string | character | TRUE / FALSE | | unicode | character | TRUE / FALSE | | bytes | character | TRUE / FALSE | | tuple | list | FALSE | | tuple | list or vector | TRUE | | list | list | FALSE | | list | list or vector | TRUE | | dict | named list | FALSE | | dict | named list or vector | TRUE | | PrVetor | vector | TRUE / FALSE | | PrMatrix | matrix | TRUE | | PrDataFrame | data.frame | TRUE |
Similar to pySet the behavior of pyGet can be changed by utilizing pyGetPoly. The predefined version of pyGetPoly for an object of class PrMatrix looks like the following:
setMethod("pyGetPoly", signature(key="character", autoTypecast = "logical", simplify = "logical", pyClass = "PrMatrix"),
function(key, autoTypecast, simplify, pyClass){
x <- pyExecg(sprintf("x = %s.toDict()", key), autoTypecast = autoTypecast, simplify = simplify)[['x']]
M <- do.call(rbind, x[['matrix']])
rownames(M) <- x[['rownames']]
colnames(M) <- x[['colnames']]
return(M)
})
For objects of type "type" no conversion is defined. Therefore, PythonInR doesn't know how to transform it into an R object so it will return a PythonInR_Object. This is kind of a nice example since the return value of type(x) is a function therefore PythonInR will return an object of type pyFunction.
pyGet("type(list())")
One can define a new function to get elements of type "type" as follows.
pyGetPoly <- PythonInR:::pyGetPoly
setClass("type")
setMethod("pyGetPoly", signature(key="character", autoTypecast = "logical", simplify = "logical", pyClass = "type"),
function(key, autoTypecast, simplify, pyClass){
pyExecg(sprintf("x = %s.__name__", key))[['x']]
})
pyGet("type(list())")
NOTE pyGetPoly The functions pyGetPoly should not be used outside the function pyGet since it does not check if R is connected to Python. If R is not connected to Python this will yield to segfault !
NOTE (bytes): In short, in Python 3 the data type string was replaced by the data type bytes.
| Command | Short Description | Example Usage |
| ---------------- | -------------------------------------------------- | -------------------------------------------------------------------- |
| BEGIN.Python | Start a Python read-eval-print loop | BEGIN.Python() print("Hello" + " " + "R!") END.Python
|
| pyAttach | Attach a Python object to an R environment | pyAttach("os.getcwd", .GlobalEnv)
|
| pyCall | Call a callable Python object | pyCall("pow", list(2,3), namespace="math")
|
| pyConnect | Connect R to Python | pyConnect()
|
| pyDict | Create a representation of a Python dict in R | myNewDict = pyDict('myNewDict', list(p=2, y=9, r=1))
|
| pyDir | The Python function dir (similar to ls) | pyDir()
|
| pyExec | Execute Python code | pyExec('some_python_code = "executed"')
|
| pyExecfile | Execute a file (like source) | pyExecfile("myPythonFile.py")
|
| pyExecg | Execute Python code and get all assigned variables | pyExecg('some_python_code = "executed"')
|
| pyExecp | Execute and print Python Code | pyExecp('"Hello" + " " + "R!"')
|
| pyExit | Close Python | pyExit()
|
| pyFunction | Create a representation of a Python function in R | pyFunction(key)
|
| pyGet | Get a Python variable | pyGet('myPythonVariable')
|
| pyGet0 | Get a Python variable | pyGet0('myPythonVariable')
|
| pyHelp | Python help | pyHelp("help")
|
| pyImport | Import a Python module | pyImport("numpy", "np")
|
| pyIsConnected | Check if R is connected to Python | pyIsConnected()
|
| pyList | Create a representation of a Python list in R | pyList(key)
|
| pyObject | Create a representation of a Python object in R | pyObject(key)
|
| pyOptions | A function to get and set some package options | pyOptions("numpyAlias", "np")
|
| pyPrint | Print a Python variable from within R | pyPrint("somePythonVariable")
|
| pySet | Set a R variable in Python | pySet("pi", pi)
|
| pySource | A modified BEGIN.Python aware version of source | pySource("myFile.R")
|
| pyTuple | Create a representation of a Python tuple in R | pyTuple(key)
|
| pyType | Get the type of a Python variable | pyType("sys")
|
| pyVersion | Returns the version of Python | pyVersion()
|
PythonInR and Glove Example GloVe is an unsupervised learning algorithm for obtaining vector representations for words. More information can be found here. Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014) 12 (2014): 1532-1543.
PythonInR and TensorFlow Example TensorFlow is an open source software library for numerical computation using data flow graphs. More information can be found here. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. "TensorFlow: Large-scale machine learning on heterogeneous systems." (2015).
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.