Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----installation, eval = FALSE-----------------------------------------------
#
# library(PytrendsLongitudinalR)
# install_pytrendslongitudinalr(envname = "pytrends-in-r-new")
#
## ----usage, eval = FALSE------------------------------------------------------
# library(PytrendsLongitudinalR)
#
# # Initialize parameters for data collection
# params <- initialize_request_trends(
# keyword = "Coronavirus disease 2019",
# topic = "/g/11j2cc_qll",
# folder_name = file.path(tempdir(), "test_folder"),
# start_date = "2024-05-01",
# end_date = "2024-05-03",
# data_format = "daily"
# )
#
# # Collect cross-section data
# cross_section(params, geo = "US", resolution = "REGION") # REGION as a resolution is a sub-region of US in this example, and it indicates US states.
#
# # Collect reference time-series data
# time_series(params, reference_geo_code = "US-CA") # The selected reference is California and its Google Trends Geo is 'US-CA'.
#
# # Given the short time period in this example, no concatenation is needed.
# concat_time_series(params, reference_geo_code = "US", zero_replace = 0.1) # Error occurs because given period is less than 269 days, concatenation is unnecessary. You can move to convert_cross_section() without any problems.
#
# # Use the reference time-series data to re-scale the cross-sectional data.
# convert_cross_section(params, reference_geo_code = "US-CA")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.