rq.est.full | R Documentation |
This procedure estimates a linear quantile regression given a set of break dates. It is structured to compute break sizes between adjacent regimes and their confidence intervals.
rq.est.full(y, x, v.tau, vec.date, n.size = 1)
y |
A numeric vector of dependent variables ( |
x |
A numeric matrix of regressors ( |
v.tau |
A numeric value representing the quantile of interest. |
vec.date |
A numeric vector of break dates, specified by the user. |
n.size |
An integer specifying the size of the cross-section ( |
An object from the quantile regression estimates, rq()
, with structural breaks.
Koenker, R. and G. Bassett Jr. (1978). Regression Quantiles. Econometrica, 46(1), 33–50.
Oka, T. and Z. Qu (2011). Estimating Structural Changes in Regression Quantiles. Journal of Econometrics, 162(2), 248–267.
## data
data(gdp)
y = gdp$gdp
x = gdp[,c("lag1", "lag2")]
## quantile
v.tau = 0.8
## break date
vec.date = 146
# cross-sectional size
n.size = 1
## estimation
rq.est.full(y, x, v.tau, vec.date, n.size)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.