Description Usage Arguments Details Value See Also Examples
Functions for copula density, generating random variates and fitting
1 2 3 4 |
df |
|
log |
|
method |
|
n |
|
Sigma |
|
startdf |
|
Udata |
|
... |
ellipsis, arguments are passed down to |
If in the call to fit.tcopula()
, method = "all"
, then
all parameters are estimated, i.e., the degrees of freedom and
the dispersion parameters (initial values from Spearman
correlations). In case of either method = "Kendall"
or
method = "Spearman"
, the corresponding rank correlations are
used and the optimization is only carried out with respect to the
degrees of freedom parameter. The initial value for the DF is given by
startdf
. See pages 197 and 229–236 of QRM.
A vector of density values of length n for dcopula.t()
. A
matrix of random variates for rcopula.t()
. A list object
containing parameter estimates and details of fit for function
fit.tcopula()
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ll <- c(0.01,0.99)
#create perspective plot for bivariate density:
BiDensPlot(func = dcopula.t, xpts = ll, ypts = ll, df = 4,
Sigma = equicorr(2, 0.5))
S <- equicorr(d = 6, rho = 0.7)
data <- rcopula.t(2000, df = 4, Sigma = S)
pairs(data)
## Fitting Student's Copula
data(smi)
data(ftse100)
s1 <- window(ftse100, "1990-11-09", "2004-03-25")
s1a <- alignDailySeries(s1)
s2a <- alignDailySeries(smi)
idx <- merge(s1a, s2a)
r <-returns(idx)
rp <- series(window(r, "1994-01-01", "2003-12-31"))
rp <- rp[(rp[, 1] != 0) & (rp[, 2] !=0), ]
Udata <- apply(rp, 2, edf, adjust = 1)
copt2 <- fit.tcopula(Udata, method = "Kendall")
|
Loading required package: gsl
Loading required package: Matrix
Loading required package: mvtnorm
Loading required package: numDeriv
Loading required package: timeSeries
Loading required package: timeDate
Attaching package: 'QRM'
The following object is masked from 'package:base':
lbeta
There were 12 warnings (use warnings() to see them)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.