nlControl: Control parameters for gradient search estimation

nlControlR Documentation

Control parameters for gradient search estimation

Description

A list of parameters for controlling the fitting process.

Usage

nlControl(tol_ll = 1e-05, tol_theta = 0.001, check_theta = FALSE,
	step = NULL, beta = 0.5, gamma = 1.25, reset_step = FALSE,
	maxit = 1000, smooth = FALSE, omicron = 0.001, verbose = FALSE)

Arguments

tol_ll

tolerance expressed as relative change of the objective function.

tol_theta

tolerance expressed as relative change of the estimates.

check_theta

logical flag. If TRUE the algorithm performs a check on the change in the estimates in addition to the likelihood.

step

step size (default standard deviation of response).

beta

decreasing step factor for line search (0,1).

gamma

nondecreasing step factor for line search (>= 1).

reset_step

logical flag. If TRUE the step size is re-setted to the initial value at each iteration.

maxit

maximum number of iterations.

smooth

logical flag. If TRUE the standard loss function is replaced with a smooth approximation.

omicron

small constant for smoothing the loss function when using smooth = TRUE. See details.

verbose

logical flag.

Details

The optimization algorithm is along the lines of the gradient search algorithm (Bottai et al, 2015). If smooth = TRUE, the classical non-differentiable loss function is replaced with a smooth version (Chen and Wei, 2005).

Value

a list of control parameters.

Author(s)

Marco Geraci

References

Bottai M, Orsini N, Geraci M (2015). A Gradient Search Maximization Algorithm for the Asymmetric Laplace Likelihood, Journal of Statistical Computation and Simulation, 85(10), 1919-1925.

Chen C, Wei Y (2005). Computational issues for quantile regression. Sankhya: The Indian Journal of Statistics, 67(2), 399-417.

See Also

nlrq1


Qtools documentation built on Nov. 2, 2023, 6:11 p.m.