attach.all | R Documentation |
The database is attached/detached to the search path. See
attach
for details.
attach.all(x, overwrite = NA, name = "attach.all")
attach.bugs(x, overwrite = NA)
detach.all(name = "attach.all")
detach.bugs()
x |
An object, which must be of class |
overwrite |
If |
name |
The name of the environment where |
While attach.all
attaches all elements of an object x
to
a database called name
, attach.bugs
attaches all
elements of x$sims.list
to the database bugs.sims
itself
making use of attach.all
.
detach.all
and detach.bugs
are removing the databases
mentioned above.
attach.all
also attaches n.sims
(the
number of simulations saved from the MCMC runs) to the database.
Each scalar parameter in the model is attached as vectors of length
n.sims
, each vector is attached as a 2-way array (with first
dimension equal to n.sims
), each matrix is attached as a 3-way
array, and so forth.
attach.all
and attach.bugs
invisibly return the
environment
(s).
detach.all
and detach.bugs
detach the
environment
(s) named name
created by attach.all
.
Without detaching, do not use attach.all
or attach.bugs
on another (bugs
) object, because instead of the given name, an
object called name
is attached. Therefore strange things may
happen ...
bugs
, attach
, detach
# An example model file is given in:
model.file <- system.file("model", "schools.txt", package="R2WinBUGS")
# Some example data (see ?schools for details):
data(schools)
J <- nrow(schools)
y <- schools$estimate
sigma.y <- schools$sd
data <- list ("J", "y", "sigma.y")
inits <- function(){
list(theta = rnorm(J, 0, 100), mu.theta = rnorm(1, 0, 100),
sigma.theta = runif(1, 0, 100))
}
parameters <- c("theta", "mu.theta", "sigma.theta")
## Not run:
## You may need to edit "bugs.directory",
## also you need write access in the working directory:
schools.sim <- bugs(data, inits, parameters, model.file,
n.chains = 3, n.iter = 1000,
bugs.directory = "c:/Program Files/WinBUGS14/",
working.directory = NULL)
# Do some inferential summaries
attach.bugs(schools.sim)
# posterior probability that the coaching program in school A
# is better than in school C:
print(mean(theta[,1] > theta[,3]))
# 50
# and school C's program:
print(quantile(theta[,1] - theta[,3], c(.25, .75)))
plot(theta[,1], theta[,3])
detach.bugs()
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.