RANN.L1: Fast Nearest Neighbour Search (Wraps ANN Library) Using L1 Metric

Finds the k nearest neighbours for every point in a given dataset in O(N log N) time using Arya and Mount's ANN library (v1.1.3). There is support for approximate as well as exact searches, fixed radius searches and 'bd' as well as 'kd' trees. The distance is computed using the L1 (Manhattan, taxicab) metric. Please see package 'RANN' for the same functionality using the L2 (Euclidean) metric.

AuthorSunil Arya and David Mount (for ANN), Samuel E. Kemp, Gregory Jefferis, Kirill Müller
Date of publication2015-05-04 11:54:30
MaintainerKirill Müller <krlmlr+r@mailbox.org>
LicenseGPL (>= 3)
Version2.5
https://github.com/jefferis/RANN/tree/master-L1

View on CRAN

Files in this package

RANN.L1
RANN.L1/inst
RANN.L1/inst/COPYRIGHT
RANN.L1/tests
RANN.L1/tests/testthat.R
RANN.L1/tests/testthat
RANN.L1/tests/testthat/test-nn.R
RANN.L1/src
RANN.L1/src/kd_util.cpp
RANN.L1/src/bd_fix_rad_search.cpp
RANN.L1/src/Makevars
RANN.L1/src/kd_split.cpp
RANN.L1/src/kd_util.h
RANN.L1/src/kd_pr_search.cpp
RANN.L1/src/pr_queue_k.h
RANN.L1/src/ANN
RANN.L1/src/ANN/ANNperf.h
RANN.L1/src/ANN/ANN.h
RANN.L1/src/ANN/ANNx.h
RANN.L1/src/bd_tree.cpp
RANN.L1/src/bd_tree.h
RANN.L1/src/ANN.cpp
RANN.L1/src/kd_pr_search.h
RANN.L1/src/pr_queue.h
RANN.L1/src/kd_split.h
RANN.L1/src/kd_tree.h
RANN.L1/src/bd_search.cpp
RANN.L1/src/bd_pr_search.cpp
RANN.L1/src/kd_fix_rad_search.cpp
RANN.L1/src/kd_dump.cpp
RANN.L1/src/Makevars.win
RANN.L1/src/NN.cc
RANN.L1/src/brute.cpp
RANN.L1/src/kd_fix_rad_search.h
RANN.L1/src/kd_search.cpp
RANN.L1/src/kd_tree.cpp
RANN.L1/src/kd_search.h
RANN.L1/NAMESPACE
RANN.L1/NEWS
RANN.L1/R
RANN.L1/R/nn.R RANN.L1/R/RANN-package.R RANN.L1/R/zzz.R
RANN.L1/README.md
RANN.L1/MD5
RANN.L1/DESCRIPTION
RANN.L1/man
RANN.L1/man/nn2.Rd RANN.L1/man/RANN.L1-package.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.