View source: R/update_par_nichisq.r
update_par_nichisq | R Documentation |
Update parameters of a Normal-Inverse-Chi-Squared distribution
update_par_nichisq(y, par)
y |
observed data. |
par |
a vector of current parameters including mu, kappa, nu, sigsq from a Normal-Inverse-Chi-Squared distribution. |
This function updates parameters of a Normal-Inverse-Chi-Squared
((\mu,\sigma^2) \sim NIX( {\sf mean}=\mu, {\sf effective sample size}=\kappa, {\sf degrees of freedom}=\nu, {\sf variance}=\sigma^2/\kappa)
)
distribution with available data to parameters of a posterior Normal-Inverse-Gamma
((\mu,\sigma^2) \sim NIG({\sf mean}=m,{\sf variance}=V \times \sigma^2,{\sf shape}=a,{\sf rate}=b)
)distribution.
Those updated parameters can be converted to parameters in a Normal-Inverse-Gamma distribution
for continuous outcomes with unknown variances using convert_chisq_to_gamma
.
A list of parameters including mu, kappa, nu, sigsq for a posterior Normal-Inverse-Chi-Squared distribution incorporating available data.
Kevin2007RARtrials
para<-list(V=1/2,a=0.5,m=9.1/100,b=0.00002)
par<-convert_gamma_to_chisq(para)
set.seed(123451)
y1<-rnorm(100,0.091,0.009)
update_par_nichisq(y1, par)
set.seed(123452)
y2<-rnorm(90,0.09,0.009)
update_par_nichisq(y2, par)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.