Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(RCTrep)
## ----eval=FALSE---------------------------------------------------------------
# source.data <- RCTrep::source.data
# target.data <- RCTrep::target.data
# output <- RCTREP(TEstimator = "G_computation", SEstimator = "Exact",
# outcome_method = "BART",
# source.data = RCTrep::source.data,
# target.data = RCTrep::target.data,
# vars_name = list(outcome_predictors =
# c("x1","x2","x3","x4","x5","x6"),
# treatment_name = c('z'),
# outcome_name = c('y')),
# selection_predictors = c("x2","x6"),
# stratification = c("x1","x3","x4","x5"),
# stratification_joint = TRUE)
#
# fusion <- Fusion$new(output$target.obj,
# output$source.obj,
# output$source.rep.obj)
#
# fusion$plot()
## ----eval=FALSE---------------------------------------------------------------
# source.data <- RCTrep::source.data
# target.data <- RCTrep::target.data
#
# vars_name <- list(outcome_predictors =
# c("x1","x2","x3","x4","x5","x6"),
# treatment_name = c('z'),
# outcome_name = c('y')
# )
## ----eval=FALSE---------------------------------------------------------------
# source.obj <- TEstimator_wrapper(
# Estimator = "G_computation",
# data = source.data,
# name = "RWD",
# vars_name = vars_name,
# outcome_method = "glm",
# outcome_formula = y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
# data.public = TRUE
# )
#
# target.obj <- TEstimator_wrapper(
# Estimator = "Crude",
# data = target.data,
# name = "RCT",
# vars_name = vars_name,
# data.public = TRUE,
# isTrial = TRUE
# )
## ----eval=FALSE---------------------------------------------------------------
# source.obj.rep <- SEstimator_wrapper(Estimator = "Exact",
# target.obj = target.obj,
# source.obj = source.obj,
# selection_predictors = c("x2","x6"))
# source.obj.rep$EstimateRep(stratification = c("x1","x3","x4","x5"))
## ----eval=FALSE---------------------------------------------------------------
# source.obj$diagnosis_t_overlap()
# source.obj$diagnosis_t_ignorability()
# source.obj.rep$diagnosis_s_overlap()
# source.obj.rep$diagnosis_s_ignorability()
## ----eval=FALSE---------------------------------------------------------------
# fusion <- Fusion$new(target.obj,
# source.obj,
# source.obj.rep)
# fusion$evaluate()
# fusion$plot()
## ----eval=FALSE---------------------------------------------------------------
# call_dashboard(source.obj = source.obj,
# target.obj = target.obj,
# source.obj.rep = source.obj.rep)
## ----eval=FALSE---------------------------------------------------------------
# source.data <- RCTrep::source.data
# target.data <- RCTrep::target.data
#
# vars_name <- list(outcome_predictors = c("x1","x2","x3","x4","x5","x6"),
# treatment_name = c('z'),
# outcome_name = c('y')
# )
#
# source.obj.gc <- TEstimator_wrapper(
# Estimator = "G_computation",
# data = source.data,
# name = "RWD",
# vars_name = vars_name,
# outcome_method = "glm",
# outcome_formula = y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
# data.public = TRUE
# )
#
# source.obj.ipw <- TEstimator_wrapper(
# Estimator = "IPW",
# data = source.data,
# name = "RWD",
# vars_name = vars_name,
# treatment_method = "glm",
# treatment_formula = z ~ x1 + x2 + x3 + x4 + x5 + x6 + x1:x2 + x3:x4,
# data.public = TRUE
# )
#
# source.obj.dr <- TEstimator_wrapper(
# Estimator = "DR",
# data = source.data,
# name = "RWD",
# vars_name = vars_name,
# outcome_method = "glm",
# outcome_formula = y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
# treatment_method = "glm",
# treatment_formula = z ~ x1 + x2 + x3 + x4 + x5 + x6 + x1:x2 + x3:x4,
# data.public = TRUE
# )
#
# target.obj <- TEstimator_wrapper(
# Estimator = "Crude",
# data = target.data,
# name = "RCT",
# vars_name = vars_name,
# data.public = TRUE,
# isTrial = TRUE
# )
#
# strata <- c("x1","x4")
# selection_predictors <- c("x2","x6")
#
# source.gc.exact <- SEstimator_wrapper(Estimator = "Exact",
# target.obj = target.obj,
# source.obj = source.obj.gc,
# selection_predictors =
# selection_predictors)
# source.gc.exact$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# source.gc.isw <- SEstimator_wrapper(Estimator = "ISW",
# target.obj = target.obj,
# source.obj = source.obj.gc,
# selection_predictors =
# selection_predictors,
# method = "glm")
# source.gc.isw$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# source.gc.subclass <- SEstimator_wrapper(Estimator = "Subclass",
# target.obj = target.obj,
# source.obj = source.obj.gc,
# selection_predictors =
# selection_predictors)
# source.gc.subclass$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# source.ipw.exact <- SEstimator_wrapper(Estimator = "Exact",
# target.obj = target.obj,
# source.obj = source.obj.ipw,
# selection_predictors =
# selection_predictors)
# source.ipw.exact$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# source.ipw.isw <- SEstimator_wrapper(Estimator = "ISW",
# target.obj = target.obj,
# source.obj = source.obj.ipw,
# selection_predictors =
# selection_predictors,
# method = "glm")
# source.ipw.isw$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# source.ipw.subclass <- SEstimator_wrapper(Estimator = "Subclass",
# target.obj = target.obj,
# source.obj = source.obj.ipw,
# selection_predictors =
# selection_predictors)
# source.ipw.subclass$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# source.dr.exact <- SEstimator_wrapper(Estimator = "Exact",
# target.obj = target.obj,
# source.obj = source.obj.dr,
# selection_predictors =
# selection_predictors)
# source.dr.exact$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# source.dr.isw <- SEstimator_wrapper(Estimator = "ISW",
# target.obj = target.obj,
# source.obj = source.obj.dr,
# selection_predictors =
# selection_predictors,
# method = "glm")
# source.dr.isw$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# source.dr.subclass <- SEstimator_wrapper(Estimator = "Subclass",
# target.obj = target.obj,
# source.obj = source.obj.dr,
# selection_predictors =
# selection_predictors)
# source.dr.subclass$EstimateRep(stratification = strata,
# stratification_joint = TRUE)
#
# fusion <- Fusion$new(target.obj,
# source.gc.exact,
# source.gc.isw,
# source.gc.subclass,
# source.ipw.exact,
# source.ipw.isw,
# source.ipw.subclass,
# source.dr.exact,
# source.dr.isw,
# source.dr.subclass)
#
# fusion$plot()
# fusion$evaluate()
## ----eval=FALSE---------------------------------------------------------------
# source.data <- RCTrep::source.data
# target.data <- RCTrep::target.data
#
# # Identification
# vars_name <- list(outcome_predictors = c("x1","x2","x3","x4","x5","x6"),
# treatment_name = c('z'),
# outcome_name = c('y')
# )
# selection_predictors <- c("x2","x6")
#
# # Estimate conditional average treatment effect
# source.obj <- TEstimator_wrapper(
# Estimator = "G_computation",
# data = source.data,
# vars_name = vars_name,
# outcome_method = "glm",
# outcome_form=y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
# name = "RWD",
# data.public = FALSE
# )
#
# target.obj <- TEstimator_wrapper(
# Estimator = "Crude",
# data = target.data,
# vars_name = vars_name,
# name = "RCT",
# data.public = FALSE,
# isTrial = TRUE
# )
#
# head(source.obj$data)
#
# # Estimate the weighted conditional average treatment effect of source.obj
# strata <- c("x1","x4")
# source.rep.obj <- SEstimator_wrapper(Estimator = "Exact",
# target.obj = target.obj,
# source.obj = source.obj,
# selection_predictors =
# selection_predictors)
# source.rep.obj$EstimateRep(stratification = strata, stratification_joint = TRUE)
#
# # Validate
# fusion <- Fusion$new(target.obj,
# source.obj,
# source.rep.obj)
#
# fusion$plot()
# fusion$print()
# fusion$evaluate()
## ----eval=FALSE---------------------------------------------------------------
# library(dplyr)
# source.data <- RCTrep::source.data
# target.data <- RCTrep::target.data
#
# # Identification
# vars_name <- list(outcome_predictors = c("x1","x2","x3","x4","x5","x6"),
# treatment_name = c('z'),
# outcome_name = c('y')
# )
#
# # Generate target.obj using full dataset
# target.obj <- TEstimator_wrapper(
# Estimator = "Crude",
# data = target.data,
# vars_name = vars_name,
# name = "RCT",
# data.public = FALSE,
# isTrial = TRUE
# )
#
# # Get unbiased estimates of conditional average treatment effect
# vars_rct <- c("x1","x2","x3","x4","x5","x6")
# RCT.estimates <- list(ATE_mean = target.obj$estimates$ATE$est,
# ATE_se = target.obj$estimates$ATE$se,
# CATE_mean_se = target.obj$get_CATE(vars_rct,FALSE))
## ----eval=FALSE---------------------------------------------------------------
# emp.p1 <- mean(target.data$x1)
# emp.p2 <- mean(target.data$x2)
# emp.p3 <- mean(target.data$x3)
# emp.p4 <- mean(target.data$x4)
# emp.p5 <- mean(target.data$x5)
# emp.p6 <- mean(target.data$x6)
# t.d <- target.data[,vars_rct]
# n <- dim(source.data)[1]
# pw.cor <- gdata::upperTriangle(cor(t.d), diag = FALSE, byrow = TRUE)
# synthetic.data <- RCTrep::GenerateSyntheticData(
# margin_dis="bernoulli",
# N = n,
# margin = list(emp.p1, emp.p2, emp.p3, emp.p4, emp.p5, emp.p6),
# var_name = vars_rct,
# pw.cor = pw.cor)
## ----eval=FALSE---------------------------------------------------------------
# synthetic.data <- semi_join(synthetic.data, source.data, by = vars_rct)
# target.obj <- TEstimator_Synthetic$new(data = synthetic.data,
# estimates=RCT.estimates,
# vars_name = vars_name,
# name = "RCT",
# isTrial = TRUE,
# data.public = TRUE)
#
# # Estimate conditional average treatment effect
# source.data <- semi_join(source.data, synthetic.data, by = vars_rct)
# source.obj <- TEstimator_wrapper(
# Estimator = "G_computation",
# data = source.data,
# vars_name = vars_name,
# outcome_method = "glm",
# outcome_form=y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
# name = "RWD",
# data.public = TRUE
# )
#
# # Estimate weighted conditional average treatment effect
# source.rep.obj <- SEstimator_wrapper(Estimator="Exact",
# target.obj=target.obj,
# source.obj=source.obj,
# selection_predictors=c("x2","x6"))
# source.rep.obj$EstimateRep(stratification = vars_rct,
# stratification_joint = FALSE)
#
# # Combine objects and validate estimates
# fusion <- Fusion$new(target.obj,
# source.obj,
# source.rep.obj)
# fusion$plot()
# fusion$evaluate()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.