Nothing
#' RFpredInterval: A package for building prediction intervals with random
#' forests and boosted forests
#'
#' \code{RFpredInterval} provides methods to build prediction intervals with
#' random forests. The methods provided in the package are Prediction Intervals
#' with Boosted Forests (PIBF) proposed by Alakus et al. (2022) and 15 distinct
#' variations to build PIs proposed by Roy and Larocque (2020).
#' \code{RFpredInterval} includes two main functions: \code{pibf()} and
#' \code{rfpi()}. \code{pibf()} applies the PIBF method and it uses the
#' \code{ranger} package (Wright and Ziegler, 2017) to fit random forests.
#' \code{rfpi()} applies the 15 variations proposed by Roy and Larocque (2020).
#' For \code{rfpi()}, \code{RFpredInterval} uses \code{randomForestSRC} package.
#' For the least-squares splitting rule, both \code{randomForestSRC} and
#' \code{ranger} packages are applicable.
#'
#' Among 16 methods, ten of them have specialized splitting rules in the random
#' forest growing process. These methods are the ones with L1 and shortest
#' prediction interval (SPI) splitting rules proposed by Roy and Larocque (2020).
#' To implement these methods, the custom split feature of the
#' \code{randomForestSRC} package (Ishwaran and Kogalur, 2021) have been
#' utilised.
#'
#' The \code{randomForestSRC} package allows users to define a custom splitting
#' rule for the tree growing process. The user needs to define the customized
#' splitting rule in the \code{splitCustom.c} file. After modifying the
#' \code{splitCustom.c} file, all C source code files under the \code{src}
#' folder of the package must be recompiled. Finally, the package must be
#' re-installed for the custom split rule to become available.
#' \code{RFpredInterval} uses \code{randomForestSRC} package by freezing at the
#' version 2.11.0.
#'
#' @section RFpredInterval functions:
#' \code{\link{pibf}}
#' \code{\link{rfpi}}
#' \code{\link{piall}}
#' \code{\link{plot.rfpredinterval}}
#' \code{\link{print.rfpredinterval}}
#'
#' @references Alakus, C., Larocque, D., & Labbe, A. (2022). RFpredInterval: An
#' R Package for Prediction Intervals with Random Forests and Boosted Forests.
#' R JOURNAL, 14(1), 300-319.
#' @references Ishwaran H, Kogalur U (2021). Fast Unified Random Forests for
#' Survival, Regression, and Classification (RF-SRC). R package version
#' 2.11.0, \url{https://cran.r-project.org/package=randomForestSRC}.
#' @references Roy, M. H., & Larocque, D. (2020). Prediction intervals with
#' random forests. Statistical methods in medical research, 29(1), 205-229.
#' doi:10.1177/0962280219829885.
#' @references Wright MN, Ziegler A (2017). “ranger: A Fast Implementation of
#' Random Forests for High Dimensional Data in C++ and R.” Journal of
#' Statistical Software, 77(1), 1–17.
#' doi:10.18637/jss.v077.i01.
#'
#' @docType package
#' @name RFpredInterval-package
NULL
#> NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.