data_transformer | R Documentation |
Provides a class to transform data for RGAN.
Method $new()
initializes a new transformer, method $fit(data)
learns
the parameters for the transformation from data (e.g. means and sds).
Methods $transform()
and $inverse_transform()
can be used to transform
and back transform a data set based on the learned parameters.
Currently, DataTransformer supports z-transformation (a.k.a. normalization)
for numerical features/variables and one hot encoding for categorical
features/variables. In your call to fit you just need to indicate which
columns contain discrete features.
A class to transform (normalize or one hot encode) tabular data for RGAN
new()
Create a new data_transformer object
data_transformer$new()
fit_continuous()
data_transformer$fit_continuous(column = NULL, data = NULL)
fit_discrete()
data_transformer$fit_discrete(column = NULL, data = NULL)
fit()
Fit a data_transformer to data.
data_transformer$fit(data, discrete_columns = NULL)
data
The data set to transform
discrete_columns
Column ids for columns with discrete/nominal values to be one hot encoded.
data <- sample_toydata() transformer <- data_transformer$new() transformer$fit(data)
transform_continuous()
data_transformer$transform_continuous(column_meta, data)
transform_discrete()
data_transformer$transform_discrete(column_meta, data)
transform()
Transform data using a fitted data_transformer. (From original format to transformed format.)
data_transformer$transform(data)
data
The data set to transform
data <- sample_toydata() transformer <- data_transformer$new() transformer$fit(data) transformed_data <- transformer$transform(data)
inverse_transform_continuous()
data_transformer$inverse_transform_continuous(meta, data)
inverse_transform_discrete()
data_transformer$inverse_transform_discrete(meta, data)
inverse_transform()
Inverse Transform data using a fitted data_transformer. (From transformed format to original format.)
data_transformer$inverse_transform(data)
data
The data set to transform
data <- sample_toydata() transformer <- data_transformer$new() transformer$fit(data) transformed_data <- transformer$transform(data) reconstructed_data <- transformer$inverse_transform(transformed_data)
clone()
The objects of this class are cloneable with this method.
data_transformer$clone(deep = FALSE)
deep
Whether to make a deep clone.
## Not run: # Before running the first time the torch backend needs to be installed torch::install_torch() # Load data data <- sample_toydata() # Build new transformer transformer <- data_transformer$new() # Fit transformer to data transformer$fit(data) # Transform data and store as new object transformed_data <- transformer$transform(data) # Train the default GAN trained_gan <- gan_trainer(transformed_data) # Sample synthetic data from the trained GAN synthetic_data <- sample_synthetic_data(trained_gan, transformer) # Plot the results GAN_update_plot(data = data, synth_data = synthetic_data, main = "Real and Synthetic Data after Training") ## End(Not run) ## ------------------------------------------------ ## Method `data_transformer$fit` ## ------------------------------------------------ data <- sample_toydata() transformer <- data_transformer$new() transformer$fit(data) ## ------------------------------------------------ ## Method `data_transformer$transform` ## ------------------------------------------------ data <- sample_toydata() transformer <- data_transformer$new() transformer$fit(data) transformed_data <- transformer$transform(data) ## ------------------------------------------------ ## Method `data_transformer$inverse_transform` ## ------------------------------------------------ data <- sample_toydata() transformer <- data_transformer$new() transformer$fit(data) transformed_data <- transformer$transform(data) reconstructed_data <- transformer$inverse_transform(transformed_data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.