plotR2pre | R Documentation |
plotR2pre()
function draws a prefractal set in R^2.
plotR2pre(l=preRIFS(), s="Prefractal points for 3-gon: k=3; p=1/3; mu=1")
l |
a list with prefractal ( |
s |
a string for the main title. |
A regular polygon is a convex polygon in which all edges and all angles are equal.
A protofractal set Z
is a discrete or continuous set, which in the iterative process generates a sample of the fractal set (a prefractal set) X
.
Pavel V. Moskalev and Alexey G. Bukhovets
preRIFS,
# Example 1. Sierpinski triangle, 1st order, p=const, mu=var for (m in seq(-4,0)) { plotR2pre(preRIFS(M=2^rnorm(n=3, mean=m, sd=-m/4)), s="Prefractal points for 1st order 3-gon") Sys.sleep(0.1) } ## Not run: # Example 2. Uniform distribution, 1st order, p=const, mu=var for (m in seq(-4,0)) { plotR2pre(preRIFS(Z=R2ngon(4,1), M=2^rnorm(n=4, mean=m, sd=-m/4)), s="Prefractal points for 1st order 4-gon") Sys.sleep(0.1) } # Example 3. Sierpinski triangle, 2nd order, p=const, mu=var for (m in seq(-3,1)) { plotR2pre(preRIFS(Z=R2ngon(3,2), M=2^rnorm(n=6, mean=m, sd=-(m-1)/4)), s="Prefractal points for 2nd order 3-gon") Sys.sleep(0.5) } # Example 4. Sierpinski square, 2nd order, p=const, mu=var for (m in seq(-3,1)) { plotR2pre(preRIFS(Z=R2ngon(4,2), M=2^rnorm(n=8, mean=m, sd=-(m-1)/4)), s="Prefractal points for 2nd order 4-gon") Sys.sleep(0.5) } ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.