View source: R/evaluateResults.R
evaluateAlgorithmResults | R Documentation |
Convenience Function to generate all result plots and calculate the benchmark score
evaluateAlgorithmResults( workingDir = "", algoNames = NULL, subset = "all", evalFolder = "Evaluation", withDirect = TRUE, withMean = TRUE, outline = TRUE, errorParam = c("zzDevAbs_Ov", "AbsPercError_Ov", "AbsError_Ov"), cutoffZ = 5, cols = NULL, ... )
workingDir |
(character) specifying the working directory: Plots will be stored in 'workingDir/evalFolder' and results will be used from 'workingDir/Results/algoName/biomarker' |
algoNames |
(character) vector specifying all algorithms that should be part of the evaluation |
subset |
(character, numeric, or data.frame) to specify for which subset the algorithm should be evaluated. character options: 'all' (default) for all test sets, a distribution type: 'normal', 'skewed', 'heavilySkewed', 'shifted'; a biomarker: 'Hb', 'Ca', 'FT4', 'AST', 'LACT', 'GGT', 'TSH', 'IgE', 'CRP', 'LDH'; 'Runtime' for runtime analysis subset; numeric option: number of test sets per biomarker, e.g. 10; data.frame: customized subset of table with test set specifications |
evalFolder |
(character) specifying the name of the ouptut directory, Plots will be stored in workingDir/evalFolder, default: 'Evaluation' |
withDirect |
(logical) indicating whether the direct method should be simulated for comparison (default:TRUE) |
withMean |
(logical) indicating whether the mean should be plotted as well (default: TRUE) |
outline |
(logical) indicating whether outliers should be drawn (TRUE, default), or not (FALSE) |
errorParam |
(character) specifying for which error parameter the data frame should be generated, choose between absolute z-score deviation ("zzDevAbs_Ov"), absolute percentage error ("AbsPercError_Ov"), and absolute error ("AbsError_Ov") |
cutoffZ |
(integer) specifying if and if so which cutoff for the absolute z-score deviation should be used to classify results as implausible and exclude them from the overall benchmark score (default: 5) |
cols |
(character) vector specifying the colors used for the different algorithms |
... |
additional arguments to be passed to the method, e.g. "truncNormal" (logical) vector specifying if a normal distribution truncated at zero shall be assumed, can be either TRUE/FALSE or a vector with TRUE/FALSE for each algorithm; "colDirect" (character) specifying the color used for the direct method, default: "grey" "ylab" (character) specifying the label for the y-axis |
(data frame) containing the computed benchmark results
Tatjana Ammer tatjana.ammer@roche.com
## Not run: # Ensure that 'generateBiomarkerTestSets()' and 'evaluateBiomarkerTestSets() is called # with the same workingDir and for all mentioned algorithms before calling this function. # first example, evaluation for several algorithms benchmarkScore <- evaluateAlgorithmResults(workingDir=tempdir(), algoNames=c("Hoffmann", "TML", "kosmic", "TMC", "refineR")) # The function will create several plots saved in workingDir/Evaluation. # second example, evaluation for only one algorithm and a defined subset benchmarkScore <- evaluateAlgorithmResults(workingDir = tempdir(), algoNames = "refineR", subset = 'Ca') # third example, saving the results in a different folder, and setting a different cutoff # for the absolute z-score deviation benchmarkScore <- evaluateAlgorithmResults(workingDir = tempdir(), algoNames = "refineR", subset = 'Ca', cutoffZ = 4, evalFolder = "Eval_Test") ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.