View source: R/run_MC_CW_IRSL_TUN.R
run_MC_CW_IRSL_TUN | R Documentation |
Runs a Monte-Carlo (MC) simulation of continuous wave infrared stimulated luminescence (CW-IRSL) using the model for tunnelling transitions. Tunnelling refers to quantum mechanical tunnelling processes from the excited state of the trap, into a recombination centre.
run_MC_CW_IRSL_TUN( A, rho, times, clusters = 10, r_c = 0, delta.r = 0.1, N_e = 200, method = "seq", output = "signal", ... )
A |
numeric (required): The effective optical excitation rate for the tunnelling process
( |
rho |
numeric (required): The density of recombination centres (defined as ρ' in Huntley 2006) (dimensionless). |
times |
numeric (required): The sequence of time steps within the simulation (s). |
clusters |
numeric (with default): The number of created clusters for the MC runs. The input can be the output of create_ClusterSystem. In that case |
r_c |
numeric (with default): Critical distance (>0) that must be provided if the
sample has been thermally and/or optically pretreated. This parameter expresses the fact
that electron-hole pairs within a critical radius |
delta.r |
numeric (with default): Increments of the dimensionless distance parameter r' |
N_e |
numeric (width default): The total number of electron traps available (dimensionless).
Can be a vector of |
method |
character (with default): Sequential |
output |
character (with default): output is either the |
... |
further arguments, such as |
The model
I_{TUN}(r',t) = -dn/dt = A * exp(-(ρ')^{-1/3} * r')* n (r',t)
Where in the function:
A := effective optical excitation rate for the tunnelling process (s^-1)
r' := the dimensionless tunnelling radius
ρ' := rho'
the dimensionless density of recombination centres (see Huntley (2006))
t := time (s)
n := the instantaneous number of electrons corresponding to the radius r' at time t
This function returns an object of class RLumCarlo_Model_Output
which
is a list consisting of an array with dimension length(times) x length(r) x clusters
and a numeric time vector.
0.2.0
Friedrich, J., Kreutzer, S., 2022. run_MC_CW_IRSL_TUN(): Run Monte-Carlo Simulation for CW-IRSL (tunnelling transitions). Function version 0.2.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2022. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence Phenomena. R package version 0.1.9. https://CRAN.R-project.org/package=RLumCarlo
Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany)
Huntley, D.J., 2006. An explanation of the power-law decay of luminescence. Journal of Physics: Condensed Matter, 18(4), 1359.
Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024
Further reading
Aitken, M.J., 1985. Thermoluminescence dating. Academic Press.
Jain, M., Guralnik, B., Andersen, M.T., 2012. Stimulated luminescence emission from localized recombination in randomly distributed defects. Journal of Physics: Condensed Matter 24, 385402.
Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related Phenomena. WORLD SCIENTIFIC. doi: 10.1142/2781
run_MC_CW_IRSL_TUN( A = 0.8, rho = 1e-4, times = 0:50, r_c = 0.05, delta.r = 0.1, method = "seq", clusters = 10, output = "signal") %>% plot_RLumCarlo(norm = TRUE, legend = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.