Nothing
#'
#' @title Predictions for RMSS Object
#'
#' @description \code{predict.RMSS} returns the predictions for a RMSS object.
#'
#' @method predict RMSS
#'
#' @param object An object of class RMSS.
#' @param newx New data for predictions.
#' @param h_ind Index for robustness parameter.
#' @param t_ind Index for sparsity parameter.
#' @param u_ind Index for diversity parameter.
#' @param group_index Groups included in the ensemble. Default setting includes all the groups.
#' @param dynamic Argument to determine whether dynamic predictions are used based on deviating cells. Default is FALSE.
#' @param ... Additional arguments for compatibility.
#'
#' @return The predictions for the RMSS object.
#'
#' @export
#'
#' @author Anthony-Alexander Christidis, \email{anthony.christidis@stat.ubc.ca}
#'
#' @seealso \code{\link{RMSS}}
#'
#' @examples
#' # Simulation parameters
#' n <- 50
#' p <- 100
#' rho <- 0.8
#' rho.inactive <- 0.2
#' group.size <- 5
#' p.active <- 15
#' snr <- 2
#' contamination.prop <- 0.3
#'
#' # Setting the seed
#' set.seed(0)
#'
#' # Block Correlation
#' sigma.mat <- matrix(0, p, p)
#' sigma.mat[1:p.active, 1:p.active] <- rho.inactive
#' for(group in 0:(p.active/group.size - 1))
#' sigma.mat[(group*group.size+1):(group*group.size+group.size),
#' (group*group.size+1):(group*group.size+group.size)] <- rho
#' diag(sigma.mat) <- 1
#'
#' # Simulation of beta vector
#' true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7),
#' rep(0, p - p.active))
#'
#' # Setting the SD of the variance
#' sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
#'
#' # Simulation of test data
#' m <- 2e3
#' x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
#' y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
#'
#' # Simulation of uncontaminated data
#' x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
#' y <- x %*% true.beta + rnorm(n, 0, sigma)
#'
#' # Contamination of data
#' contamination_indices <- 1:floor(n*contamination.prop)
#' k_lev <- 2
#' k_slo <- 100
#' x_train <- x
#' y_train <- y
#' beta_cont <- true.beta
#' beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
#' beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
#' for(cont_id in contamination_indices){
#'
#' a <- runif(p, min = -1, max = 1)
#' a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
#' x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + k_lev * a /
#' as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
#' y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
#' }
#'
#' # RMSS
#' rmss_fit <- RMSS(x = x_train, y = y_train,
#' n_models = 3,
#' h_grid = c(35), t_grid = c(6, 8, 10), u_grid = c(1:3),
#' initial_estimator = "robStepSplitReg",
#' tolerance = 1e-1,
#' max_iter = 1e3,
#' neighborhood_search = FALSE,
#' neighborhood_search_tolerance = 1e-1)
#' rmss_coefs <- coef(rmss_fit,
#' h_ind = 1, t_ind = 2, u_ind = 1,
#' group_index = 1:rmss_fit$n_models)
#' sens_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/p.active
#' spec_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/sum(rmss_coefs[-1]!=0)
#' rmss_preds <- predict(rmss_fit, newx = x_test,
#' h_ind = 1, t_ind = 2, u_ind = 1,
#' group_index = 1:rmss_fit$n_models,
#' dynamic = FALSE)
#' rmss_mspe <- mean((y_test - rmss_preds)^2)/sigma^2
#'
predict.RMSS <- function(object, newx,
h_ind, t_ind, u_ind,
group_index = NULL,
dynamic = FALSE,
...){
DataCheckPredict(object, newx,
h_ind, t_ind, u_ind)
if(!dynamic){
ensemble.coef <- coef(object, h_ind, t_ind, u_ind, group_index = group_index)
output <- ensemble.coef[1] + as.numeric(newx %*% ensemble.coef[-1])
return(output)
} else{
DDC_cells <- cellWise::DDCpredict(newx, object$DDCx)$indcells
x_test_cells <- newx
x_test_cells[DDC_cells] <- NA
cells_id <- apply(x_test_cells, 1, function(x) return(which(is.na(x))))
var_selections <- apply(object$coef[[h_ind]][[t_ind]][[u_ind]], 2,
function(x) return(which(x!=0)))
selected_models <- matrix(0, nrow = nrow(newx), ncol = object$n_models)
for(model_id in 1:object$n_models){
selected_models[, model_id] <- sapply(cells_id, function(x) return(any(x %in% var_selections[, model_id])),
simplify = TRUE)
}
selected_models <- lapply(1:nrow(newx), function(x, selected_models) return(which(selected_models[x, ] != 0)),
selected_models = selected_models)
output <- numeric(nrow(newx))
for(obs_id in 1:nrow(newx)){
ensemble.coef <- coef(object,
h_ind = h_ind, t_ind = t_ind, u_ind = u_ind,
group_index = selected_models[[obs_id]])
output[obs_id] <- ensemble.coef[1] + as.numeric(newx[obs_id,] %*% ensemble.coef[-1])
}
return(output)
}
}
#'
#' @title Predictions for cv.RMSS Object
#'
#' @description \code{predict.cv.RMSS} returns the predictions for a cv.RMSS object.
#'
#' @method predict cv.RMSS
#'
#' @param object An object of class cv.RMSS.
#' @param newx New data for predictions.
#' @param h_ind Index for robustness parameter.
#' @param t_ind Index for sparsity parameter.
#' @param u_ind Index for diversity parameter.
#' @param group_index Groups included in the ensemble. Default setting includes all the groups.
#' @param dynamic Argument to determine whether dynamic predictions are used based on deviating cells. Default is FALSE.
#' @param ... Additional arguments for compatibility.
#'
#' @return The predictions for the cv.RMSS object.
#'
#' @export
#'
#' @author Anthony-Alexander Christidis, \email{anthony.christidis@stat.ubc.ca}
#'
#' @seealso \code{\link{cv.RMSS}}
#'
#' @examples
#' # Simulation parameters
#' n <- 50
#' p <- 100
#' rho <- 0.8
#' rho.inactive <- 0.2
#' group.size <- 5
#' p.active <- 15
#' snr <- 2
#' contamination.prop <- 0.3
#'
#' # Setting the seed
#' set.seed(0)
#'
#' # Block Correlation
#' sigma.mat <- matrix(0, p, p)
#' sigma.mat[1:p.active, 1:p.active] <- rho.inactive
#' for(group in 0:(p.active/group.size - 1))
#' sigma.mat[(group*group.size+1):(group*group.size+group.size),
#' (group*group.size+1):(group*group.size+group.size)] <- rho
#' diag(sigma.mat) <- 1
#'
#' # Simulation of beta vector
#' true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7),
#' rep(0, p - p.active))
#'
#' # Setting the SD of the variance
#' sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
#'
#' # Simulation of test data
#' m <- 2e3
#' x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
#' y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
#'
#' # Simulation of uncontaminated data
#' x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
#' y <- x %*% true.beta + rnorm(n, 0, sigma)
#'
#' # Contamination of data
#' contamination_indices <- 1:floor(n*contamination.prop)
#' k_lev <- 2
#' k_slo <- 100
#' x_train <- x
#' y_train <- y
#' beta_cont <- true.beta
#' beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
#' beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
#' for(cont_id in contamination_indices){
#'
#' a <- runif(p, min = -1, max = 1)
#' a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
#' x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + k_lev * a /
#' as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
#' y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
#' }
#'
#' # CV RMSS
#' rmss_fit <- cv.RMSS(x = x_train, y = y_train,
#' n_models = 3,
#' h_grid = c(35), t_grid = c(6, 8, 10), u_grid = c(1:3),
#' initial_estimator = "robStepSplitReg",
#' tolerance = 1e-1,
#' max_iter = 1e3,
#' neighborhood_search = FALSE,
#' neighborhood_search_tolerance = 1e-1,
#' n_folds = 5,
#' alpha = 1/4,
#' gamma = 1,
#' n_threads = 1)
#' rmss_coefs <- coef(rmss_fit,
#' h_ind = rmss_fit$h_opt,
#' t_ind = rmss_fit$t_opt,
#' u_ind = rmss_fit$u_opt,
#' group_index = 1:rmss_fit$n_models)
#' sens_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/p.active
#' spec_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/sum(rmss_coefs[-1]!=0)
#' rmss_preds <- predict(rmss_fit, newx = x_test,
#' h_ind = rmss_fit$h_opt,
#' t_ind = rmss_fit$t_opt,
#' u_ind = rmss_fit$u_opt,
#' group_index = 1:rmss_fit$n_models,
#' dynamic = FALSE)
#' rmss_mspe <- mean((y_test - rmss_preds)^2)/sigma^2
#'
predict.cv.RMSS <- function(object, newx,
h_ind = NULL, t_ind = NULL, u_ind = NULL,
group_index = NULL,
dynamic = FALSE,
...){
DataCheckPredict(object, newx,
h_ind, t_ind, u_ind)
if(is.null(h_ind))
h_ind <- object$h_opt
if(is.null(t_ind))
t_ind <- object$t_opt
if(is.null(u_ind))
u_ind <- object$u_opt
if(!dynamic){
ensemble.coef <- coef(object, h_ind, t_ind, u_ind, group_index = group_index)
output <- ensemble.coef[1] + as.numeric(newx %*% ensemble.coef[-1])
return(output)
} else{
DDC_cells <- cellWise::DDCpredict(newx, object$DDCx)$indcells
x_test_cells <- newx
x_test_cells[DDC_cells] <- NA
cells_id <- apply(x_test_cells, 1, function(x) return(which(is.na(x))))
var_selections <- apply(object$coef[[h_ind]][[t_ind]][[u_ind]], 2,
function(x) return(which(x!=0)))
selected_models <- matrix(0, nrow = nrow(newx), ncol = object$n_models)
for(model_id in 1:object$n_models){
selected_models[, model_id] <- sapply(cells_id, function(x) return(any(x %in% var_selections[, model_id])),
simplify = TRUE)
}
selected_models <- lapply(1:nrow(newx), function(x, selected_models) return(which(selected_models[x, ] != 0)),
selected_models = selected_models)
empty_models <- which(lapply(selected_models, length) == 0)
for(empty_id in empty_models)
selected_models[[empty_id]] <- 1:object$n_models
output <- numeric(nrow(newx))
for(obs_id in 1:nrow(newx)){
ensemble.coef <- coef(object,
h_ind = h_ind, t_ind = t_ind, u_ind = u_ind,
group_index = selected_models[[obs_id]])
output[obs_id] <- ensemble.coef[1] + as.numeric(newx[obs_id,] %*% ensemble.coef[-1])
}
return(output)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.