View source: R/PLOT_plotConvergence.R
| plotParamConvergence | R Documentation | 
Plot the evolution of estimated parameters after the burn-in phase.
plotParamConvergence(output, var, ...)
output | 
 object returned by mixtCompLearn function from RMixtComp or rmcMultiRun function from RMixtCompIO  | 
var | 
 name of the variable  | 
... | 
 graphical parameters  | 
Quentin Grimonprez
Other plot: 
heatmapClass(),
heatmapTikSorted(),
heatmapVar(),
histMisclassif(),
plot.MixtComp(),
plotConvergence(),
plotDataBoxplot(),
plotDataCI(),
plotDiscrimClass(),
plotDiscrimVar(),
plotProportion()
if (requireNamespace("RMixtCompIO", quietly = TRUE)) {
  dataLearn <- list(
    var1 = as.character(c(rnorm(50, -2, 0.8), rnorm(50, 2, 0.8))),
    var2 = as.character(c(rnorm(50, 2), rpois(50, 8)))
  )
  model <- list(
    var1 = list(type = "Gaussian", paramStr = ""),
    var2 = list(type = "Poisson", paramStr = "")
  )
  algo <- list(
    nClass = 2,
    nInd = 100,
    nbBurnInIter = 100,
    nbIter = 100,
    nbGibbsBurnInIter = 100,
    nbGibbsIter = 100,
    nInitPerClass = 3,
    nSemTry = 20,
    confidenceLevel = 0.95,
    ratioStableCriterion = 0.95,
    nStableCriterion = 10,
    mode = "learn"
  )
  resLearn <-RMixtCompIO::rmcMultiRun(algo, dataLearn, model, nRun = 3)
  # plot
  plotParamConvergence(resLearn, "var1")
  plotParamConvergence(resLearn, "var2")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.