Nothing
test_that("calc_indexes is correct", {
test_iris <- create_iris_df()
ratios <- roc_points(
data = test_iris,
response = Species_bin_fct,
predictor = Sepal.Width
)
sorted_fpr <- rev(ratios$fpr)
indexes <- calc_indexes(
sorted_fpr,
lower_threshold = 0,
upper_threshold = 0.1
)
expected_indexes <- partial.points.indexes(
test_iris[["Species_bin_fct"]],
test_iris[["Sepal.Width"]],
lower.fp = 0,
upper.fp = 0.1
)
expect_equal(indexes[["lower"]], expected_indexes[["lower"]])
expect_equal(indexes[["upper"]], expected_indexes[["upper"]])
})
test_that("interp_lower_threshold throws a message when not adding threshold", {
test_iris <- create_iris_df()
ratios <- roc_points(
data = test_iris,
response = Species_bin_fct,
predictor = Sepal.Width
)
sorted_fpr <- rev(ratios$fpr)
sorted_tpr <- rev(ratios$tpr)
indexes <- calc_indexes(
ratio = sorted_fpr,
lower_threshold = 0,
upper_threshold = 0.1
)
expect_message(
expect_message(
interp_lower_threshold(
ratio = sorted_fpr,
interp_ratio = sorted_tpr,
lower_threshold = 0,
lower_index = indexes[["lower"]]
),
class = "inform_lower_threshold"
),
class = "skip_lower_inter_msg"
)
})
test_that("interp_upper_threshold throws a message when not adding threshold", {
test_iris <- create_iris_df()
ratios <- roc_points(
data = test_iris,
response = Species_bin_fct,
predictor = Sepal.Width
)
sorted_fpr <- rev(ratios$fpr)
sorted_tpr <- rev(ratios$tpr)
indexes <- calc_indexes(
ratio = sorted_fpr,
lower_threshold = 0.9,
upper_threshold = 1
)
expect_message(
expect_message(
interp_upper_threshold(
ratio = sorted_fpr,
interp_ratio = sorted_tpr,
upper_threshold = 1,
upper_index = indexes[["upper"]]
),
class = "inform_upper_threshold"
),
class = "skip_upper_inter_msg"
)
})
test_that("interp_lower_threshold is correct", {
test_iris <- create_iris_df()
ratios <- roc_points(
data = test_iris,
response = Species_bin_fct,
predictor = Sepal.Width
)
sorted_fpr <- rev(ratios$fpr)
sorted_tpr <- rev(ratios$tpr)
indexes <- calc_indexes(
ratio = sorted_fpr,
lower_threshold = 0.2,
upper_threshold = 0.5
)
threshold_point <- interp_lower_threshold(
ratio = sorted_fpr,
interp_ratio = sorted_tpr,
lower_threshold = 0.2,
lower_index = indexes[["lower"]]
)
expected_ratios <- partial.points.curve(
test_iris[["Species_bin_fct"]],
test_iris[["Sepal.Width"]],
lower.fp = 0.2,
upper.fp = 0.5
)
expect_equal(
threshold_point[["interp_point"]],
expected_ratios[["sen.pr"]][1]
)
expect_equal(threshold_point[["threshold"]], expected_ratios[["fpr.pr"]][1])
})
test_that("interp_upper_threshold is correct", {
test_iris <- create_iris_df()
ratios <- roc_points(
data = test_iris,
response = Species_bin_fct,
predictor = Sepal.Width
)
sorted_fpr <- rev(ratios$fpr)
sorted_tpr <- rev(ratios$tpr)
indexes <- calc_indexes(
ratio = sorted_fpr,
lower_threshold = 0.2,
upper_threshold = 0.5
)
threshold_point <- interp_upper_threshold(
ratio = sorted_fpr,
interp_ratio = sorted_tpr,
upper_threshold = 0.5,
upper_index = indexes[["upper"]]
)
expected_ratios <- partial.points.curve(
test_iris[["Species_bin_fct"]],
test_iris[["Sepal.Width"]],
lower.fp = 0.2,
upper.fp = 0.5
)
last_index <- length(expected_ratios[["fpr.pr"]])
expect_equal(
threshold_point[["interp_point"]],
expected_ratios[["sen.pr"]][last_index]
)
expect_equal(
threshold_point[["threshold"]],
expected_ratios[["fpr.pr"]][last_index]
)
})
test_that("interp_thresholds is correct", {
test_iris <- create_iris_df()
ratios <- roc_points(
data = test_iris,
response = Species_bin_fct,
predictor = Sepal.Width
)
sorted_fpr <- rev(ratios$fpr)
sorted_tpr <- rev(ratios$tpr)
indexes <- calc_indexes(
ratio = sorted_fpr,
lower_threshold = 0.2,
upper_threshold = 0.5
)
interp_points <- interp_thresholds(
ratio = sorted_fpr,
interp_ratio = sorted_tpr,
lower_threshold = 0.2,
upper_threshold = 0.5,
lower_index = indexes[["lower"]],
upper_index = indexes[["upper"]]
)
expected_ratios <- partial.points.curve(
test_iris[["Species_bin_fct"]],
test_iris[["Sepal.Width"]],
lower.fp = 0.2,
upper.fp = 0.5
)
last_index <- length(expected_ratios[["fpr.pr"]])
expect_equal(
interp_points[["lower"]][["interp_point"]],
expected_ratios[["sen.pr"]][1]
)
expect_equal(
interp_points[["lower"]][["threshold"]],
expected_ratios[["fpr.pr"]][1]
)
expect_equal(
interp_points[["upper"]][["interp_point"]],
expected_ratios[["sen.pr"]][last_index]
)
expect_equal(
interp_points[["upper"]][["threshold"]],
expected_ratios[["fpr.pr"]][last_index]
)
})
test_that("FPR calc_partial_roc_points is correct", {
test_iris <- create_iris_df()
ppoints <- calc_partial_roc_points(
data = test_iris,
response = Species_bin_fct,
predictor = Sepal.Width,
lower_threshold = 0.2,
upper_threshold = 0.5,
ratio = "fpr"
)
expected_ppoints <- partial.points.curve(
test_iris[["Species_bin_fct"]],
test_iris[["Sepal.Width"]],
lower.fp = 0.2,
upper.fp = 0.5
)
expect_equal(
ppoints[["fpr"]],
expected_ppoints[["fpr.pr"]]
)
expect_equal(
ppoints[["tpr"]],
expected_ppoints[["sen.pr"]]
)
})
test_that("TPR calc_partial_roc_points is correct", {
test_iris <- create_iris_df()
ppoints <- suppressMessages(
calc_partial_roc_points(
data = test_iris,
response = Species_bin_fct,
predictor = Sepal.Width,
lower_threshold = 0.9,
upper_threshold = 1,
ratio = "tpr"
)
)
expected_ppoints <- pHSpoints(
test_iris[["Species_bin_fct"]],
test_iris[["Sepal.Width"]],
lower.sen = 0.9
)
expect_equal(
ppoints[["fpr"]],
expected_ppoints[, 1]
)
expect_equal(
ppoints[["tpr"]],
expected_ppoints[, 2]
)
})
test_that("calc_partial_points works with .condition", {
test_iris <- create_iris_df()
partial_points_fct <- suppressMessages(
calc_partial_roc_points(
test_iris,
response = Species,
predictor = Sepal.Length,
lower_threshold = 0,
upper_threshold = 0.9,
ratio = "fpr",
.condition = "virginica"
)
)
partial_points_int <- suppressMessages(
calc_partial_roc_points(
test_iris,
response = Species_int,
predictor = Sepal.Length,
lower_threshold = 0,
upper_threshold = 0.9,
ratio = "fpr",
.condition = 3
)
)
partial_points_chr <- suppressMessages(
calc_partial_roc_points(
test_iris,
response = Species_chr,
predictor = Sepal.Length,
lower_threshold = 0,
upper_threshold = 0.9,
ratio = "fpr",
.condition = "virginica"
)
)
expected_partial_points <- suppressMessages(
calc_partial_roc_points(
test_iris,
response = Species_bin_fct_virg,
predictor = Sepal.Length,
lower_threshold = 0,
upper_threshold = 0.9,
ratio = "fpr"
)
)
expect_equal(partial_points_fct, expected_partial_points)
expect_equal(partial_points_int, expected_partial_points)
expect_equal(partial_points_chr, expected_partial_points)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.