RSNNS: Neural Networks in R using the Stuttgart Neural Network Simulator (SNNS)

The Stuttgart Neural Network Simulator (SNNS) is a library containing many standard implementations of neural networks. This package wraps the SNNS functionality to make it available from within R. Using the 'RSNNS' low-level interface, all of the algorithmic functionality and flexibility of SNNS can be accessed. Furthermore, the package contains a convenient high-level interface, so that the most common neural network topologies and learning algorithms integrate seamlessly into R.

Install the latest version of this package by entering the following in R:
install.packages("RSNNS")
AuthorChristoph Bergmeir and José M. Benítez
Date of publication2016-12-16 08:33:39
MaintainerChristoph Bergmeir <c.bergmeir@decsai.ugr.es>
LicenseLGPL (>= 2) | file LICENSE
Version0.4-9
https://github.com/cbergmeir/RSNNS

View on CRAN

Man pages

analyzeClassification: Converts continuous outputs to class labels

art1: Create and train an art1 network

art2: Create and train an art2 network

artmap: Create and train an artmap network

assoz: Create and train an (auto-)associative memory

confusionMatrix: Computes a confusion matrix

decodeClassLabels: Decode class labels to a binary matrix

denormalizeData: Revert data normalization

dlvq: Create and train a dlvq network

elman: Create and train an Elman network

encodeClassLabels: Encode a matrix of (decoded) class labels

exportToSnnsNetFile: Export the net to a file in the original SNNS file format

extractNetInfo: Extract information from a network

getNormParameters: Get normalization parameters of the input data

getSnnsRDefine: Get a define of the SNNS kernel

getSnnsRFunctionTable: Get SnnsR function table

inputColumns: Get the columns that are inputs

jordan: Create and train a Jordan network

matrixToActMapList: Convert matrix of activations to activation map list

mlp: Create and train a multi-layer perceptron (MLP)

normalizeData: Data normalization

normTrainingAndTestSet: Function to normalize training and test set

outputColumns: Get the columns that are targets

plotActMap: Plot activation map

plotIterativeError: Plot iterative errors of an rsnns object

plotRegressionError: Plot a regression error plot

plotROC: Plot a ROC curve

predict.rsnns: Generic predict function for rsnns object

print.rsnns: Generic print function for rsnns objects

rbf: Create and train a radial basis function (RBF) network

rbfDDA: Create and train an RBF network with the DDA algorithm

readPatFile: Load data from a pat file

readResFile: Rudimentary parser for res files.

resolveSnnsRDefine: Resolve a define of the SNNS kernel

rsnnsObjectFactory: Object factory for generating rsnns objects

RSNNS-package: Getting started with the RSNNS package

savePatFile: Save data to a pat file

setSnnsRSeedValue: DEPRECATED, Set the SnnsR seed value

snnsData: Example data of the package

SnnsR-class: The main class of the package

SnnsRObject-createNet: Create a layered network

SnnsRObject-createPatSet: Create a pattern set

SnnsRObject-extractNetInfo: Get characteristics of the network.

SnnsRObject-extractPatterns: Extract the current pattern set to a matrix

SnnsRObjectFactory: SnnsR object factory

SnnsRObject-getAllHiddenUnits: Get all hidden units of the net

SnnsRObject-getAllInputUnits: Get all input units of the net

SnnsRObject-getAllOutputUnits: Get all output units of the net.

SnnsRObject-getAllUnits: Get all units present in the net.

SnnsRObject-getAllUnitsTType: Get all units in the net of a certain 'ttype'.

SnnsRObject-getCompleteWeightMatrix: Get the complete weight matrix.

SnnsRObject-getInfoHeader: Get an info header of the network.

SnnsRObject-getSiteDefinitions: Get the sites definitions of the network.

SnnsRObject-getTypeDefinitions: Get the FType definitions of the network.

SnnsRObject-getUnitDefinitions: Get the unit definitions of the network.

SnnsRObject-getUnitsByName: Find all units whose name begins with a given prefix.

SnnsRObject-getWeightMatrix: Get the weight matrix between two sets of units

SnnsRObject-initializeNet: Initialize the network

SnnsRObjectMethodCaller: Method caller for SnnsR objects

SnnsRObject-predictCurrPatSet: Predict values with a trained net

SnnsRObject-resetRSNNS: Reset the SnnsR object.

SnnsRObject-setTTypeUnitsActFunc: Set the activation function for all units of a certain ttype.

SnnsRObject-setUnitDefaults: Set the unit defaults

SnnsRObject-somPredictComponentMaps: Calculate the som component maps

SnnsRObject-somPredictCurrPatSetWinners: Get most of the relevant results from a som

SnnsRObject-somPredictCurrPatSetWinnersSpanTree: Get the spanning tree of the SOM

SnnsRObject-train: Train a network and test it in every training iteration

SnnsRObject-whereAreResults: Get a list of output units of a net

som: Create and train a self-organizing map (SOM)

splitForTrainingAndTest: Function to split data into training and test set

summary.rsnns: Generic summary function for rsnns objects

toNumericClassLabels: Convert a vector (of class labels) to a numeric vector

train: Internal generic train function for rsnns objects

vectorToActMap: Convert a vector to an activation map

weightMatrix: Function to extract the weight matrix of an rsnns object

Functions

$ Man page
analyzeClassification Man page
art1 Man page
art1.default Man page
art2 Man page
art2.default Man page
artmap Man page
artmap.default Man page
assoz Man page
assoz.default Man page
confusionMatrix Man page
createNet,SnnsR-method Man page
createPatSet,SnnsR-method Man page
decodeClassLabels Man page
denormalizeData Man page
dlvq Man page
dlvq.default Man page
elman Man page
elman.default Man page
encodeClassLabels Man page
exportToSnnsNetFile Man page
extractNetInfo Man page
extractNetInfo,SnnsR-method Man page
extractPatterns,SnnsR-method Man page
getAllHiddenUnits,SnnsR-method Man page
getAllInputUnits,SnnsR-method Man page
getAllOutputUnits,SnnsR-method Man page
getAllUnits,SnnsR-method Man page
getAllUnitsTType,SnnsR-method Man page
getCompleteWeightMatrix,SnnsR-method Man page
getInfoHeader,SnnsR-method Man page
getNormParameters Man page
getSiteDefinitions,SnnsR-method Man page
getSnnsRDefine Man page
getSnnsRFunctionTable Man page
getTypeDefinitions,SnnsR-method Man page
getUnitDefinitions,SnnsR-method Man page
getUnitsByName,SnnsR-method Man page
getWeightMatrix,SnnsR-method Man page
initializeNet,SnnsR-method Man page
inputColumns Man page
jordan Man page
jordan.default Man page
matrixToActMapList Man page
mlp Man page
mlp.default Man page
normalizeData Man page
normTrainingAndTestSet Man page
outputColumns Man page
plotActMap Man page
plotIterativeError Man page
plotIterativeError.rsnns Man page
plotRegressionError Man page
plotROC Man page
predictCurrPatSet,SnnsR-method Man page
predict.rsnns Man page
print.rsnns Man page
rbf Man page
rbfDDA Man page
rbfDDA.default Man page
rbf.default Man page
readPatFile Man page
readResFile Man page
resetRSNNS,SnnsR-method Man page
resolveSnnsRDefine Man page
rsnns Man page
RSNNS Man page
rsnnsObjectFactory Man page
RSNNS-package Man page
savePatFile Man page
setSnnsRSeedValue Man page
setTTypeUnitsActFunc,SnnsR-method Man page
setUnitDefaults,SnnsR-method Man page
snnsData Man page
SnnsR-class Man page
SnnsR__createNet Man page
SnnsR__createPatSet Man page
SnnsR__extractNetInfo Man page
SnnsR__extractPatterns Man page
SnnsR__getAllHiddenUnits Man page
SnnsR__getAllInputUnits Man page
SnnsR__getAllOutputUnits Man page
SnnsR__getAllUnits Man page
SnnsR__getAllUnitsTType Man page
SnnsR__getCompleteWeightMatrix Man page
SnnsR__getInfoHeader Man page
SnnsR__getSiteDefinitions Man page
SnnsR__getTypeDefinitions Man page
SnnsR__getUnitDefinitions Man page
SnnsR__getUnitsByName Man page
SnnsR__getWeightMatrix Man page
SnnsR__initializeNet Man page
$,SnnsR-method Man page
SnnsRObject$createNet Man page
SnnsRObject$createPatSet Man page
SnnsRObject$extractNetInfo Man page
SnnsRObject$extractPatterns Man page
SnnsRObjectFactory Man page
SnnsRObject$getAllHiddenUnits Man page
SnnsRObject$getAllInputUnits Man page
SnnsRObject$getAllOutputUnits Man page
SnnsRObject$getAllUnits Man page
SnnsRObject$getAllUnitsTType Man page
SnnsRObject$getCompleteWeightMatrix Man page
SnnsRObject$getInfoHeader Man page
SnnsRObject$getSiteDefinitions Man page
SnnsRObject$getTypeDefinitions Man page
SnnsRObject$getUnitDefinitions Man page
SnnsRObject$getUnitsByName Man page
SnnsRObject$getWeightMatrix Man page
SnnsRObject$initializeNet Man page
SnnsRObjectMethodCaller Man page
SnnsRObject$predictCurrPatSet Man page
SnnsRObject$resetRSNNS Man page
SnnsRObject$setTTypeUnitsActFunc Man page
SnnsRObject$setUnitDefaults Man page
SnnsRObject$somPredictComponentMaps Man page
SnnsRObject$somPredictCurrPatSetWinners Man page
SnnsRObject$somPredictCurrPatSetWinnersSpanTree Man page
SnnsRObject$train Man page
SnnsRObject$whereAreResults Man page
SnnsR__predictCurrPatSet Man page
SnnsR__resetRSNNS Man page
SnnsR__setTTypeUnitsActFunc Man page
SnnsR__setUnitDefaults Man page
SnnsR__somPredictComponentMaps Man page
SnnsR__somPredictCurrPatSetWinners Man page
SnnsR__somPredictCurrPatSetWinnersSpanTree Man page
SnnsR__train Man page
SnnsR__whereAreResults Man page
som Man page
som.default Man page
somPredictComponentMaps,SnnsR-method Man page
somPredictCurrPatSetWinners,SnnsR-method Man page
somPredictCurrPatSetWinnersSpanTree,SnnsR-method Man page
splitForTrainingAndTest Man page
summary.rsnns Man page
toNumericClassLabels Man page
train Man page
train.rsnns Man page
train,SnnsR-method Man page
vectorToActMap Man page
weightMatrix Man page
weightMatrix.rsnns Man page
whereAreResults,SnnsR-method Man page

Files

inst
inst/CITATION
inst/doc
inst/doc/KnownIssues
tests
tests/testAllDemos.R
src
src/update_f.cpp
src/SnnsCLib.cpp
src/prun_f.h
src/ext_typ.h
src/SnnsCLibWrapper.cpp
src/cc_modify.h
src/Makevars
src/sigmoid_tbl.h
src/func_mac.h
src/kr_art.cpp
src/cc_mac.h
src/u_lrand48.h
src/cc_type.h
src/stochastic_learn_f.h
src/func_tbl.cpp
src/cc_modify.cpp
src/bn_art2.h
src/bn_artmap.cpp
src/krart_df.h
src/kr_td.h
src/tacoma_learn.cpp
src/arttr_f.cpp
src/bn_kohonen.cpp
src/cc_display.cpp
src/SnnsCLib.h
src/version.h
src/kr_mac.h
src/kr_const.h
src/krui_typ.h
src/kr_inversion.cpp
src/kr_art.h
src/scaled_conj_grad.h
src/cc_display.h
src/art_ui.h
src/kr_newpattern.h
src/kr_pat_parse.cpp
src/arttr_f.h
src/trans_f.h
src/kr_amap.cpp
src/dlvq_learn.cpp
src/scaled_conj_grad.cpp
src/bn_art1.cpp
src/kr_funcs.cpp
src/kr_ui.cpp
src/dlvq_type.h
src/matrix.cpp
src/tacoma_learn.h
src/bn_JordElm.h
src/tbl_func.cpp
src/u_lrand48.cpp
src/bn_kohonen.h
src/SnnsCLibGenericR_util.c
src/kr_JordElm.h
src/kr_inversion.h
src/learn_f.cpp
src/tbl_func.h
src/bn_art2.cpp
src/stochastic_learn_f.cpp
src/kr_io.cpp
src/remap_f.h
src/trans_f.cpp
src/kr_def.h
src/kr_typ.h
src/art_typ.h
src/bn_art1.h
src/init_f.h
src/kr_pat_parse.h
src/kr_td.cpp
src/kr_art1.cpp
src/init_f.cpp
src/kr_mem.cpp
src/cc_glob.h
src/func_tbl.h
src/cc_learn.cpp
src/kr_art2.h
src/glob_typ.h
src/cc_glob.cpp
src/learn_f.h
src/kernel.h
src/bn_assoz.cpp
src/bn_JordElm.cpp
src/bn_artmap.h
src/kr_ui.h
src/kernel.cpp
src/dlvq_learn.h
src/kr_pat_scan.cpp
src/kr_pat_scan.h
src/cc_learn.h
src/kr_mem.h
src/art_ui.cpp
src/y.tab.h
src/kr_JordElm.cpp
src/kr_newpattern.cpp
src/prun_f.cpp
src/Makevars.win
src/kr_art2.cpp
src/kr_funcs.h
src/cc_prune.h
src/remap_f.cpp
src/cc_prune.cpp
src/SnnsCLibGeneric_util.h
src/kr_io.h
src/bn_assoz.h
src/kr_amap.h
src/enzo_mem_typ.h
src/kr_art1.h
src/update_f.h
src/matrix.h
NAMESPACE
demo
demo/art2_tetraSnnsR.R demo/mlp_1dim_eval.R demo/encoderSnnsCLib.R demo/assoz_lettersSnnsR.R demo/art1_lettersSnnsR.R demo/iris.R demo/mlp_complex_plot.R demo/rbfDDA_spiralsSnnsR.R demo/mlp_iris_tuning.R demo/eight_elmanSnnsR.R demo/mlp_irisSnnsR.R demo/mlp_my_predict.R demo/rbf_irisSnnsR.R demo/artmap_lettersSnnsR.R demo/mlp_plot_with_my_predict.R demo/laser.R demo/rbf_sinSnnsR.R demo/assoz_letters.R demo/som_iris.R demo/mlp_binary_eval.R demo/art2_tetra.R demo/pruning_iris.R demo/som_cubeSnnsR.R demo/pruning_irisSnnsR.R demo/mlp_complex_eval.R demo/mlp_plot.R
demo/00Index
demo/mlp_eval6.R demo/art1_letters.R demo/mlp_eval.R demo/dlvq_ziffSnnsR.R demo/artmap_letters.R demo/rbf_sin.R demo/eight_elman.R demo/dlvq_ziff.R
data
data/snnsData.RData
R
R/SnnsR_masked.R R/SnnsR_train.R R/elman.R R/assoz.R R/rbf.R R/rbfDDA.R R/rsnns.R R/SnnsRObjectFactory.R R/SnnsR_util.R R/normalizeData.R R/SnnsR_patterns.R R/mlp.R R/reg_class.R R/SnnsR_extractNetInfo.R R/SnnsR_parser.R R/SnnsR_createNets.R R/art1.R R/docData.R R/som.R R/RSNNS-package.R R/util.R R/artmap.R R/dlvq.R R/art2.R R/jordan.R R/parser.R R/SnnsDefines.R
MD5
DESCRIPTION
ChangeLog
man
man/exportToSnnsNetFile.Rd man/SnnsRObject-getUnitDefinitions.Rd man/jordan.Rd man/matrixToActMapList.Rd man/SnnsRObject-extractPatterns.Rd man/splitForTrainingAndTest.Rd man/SnnsRObject-extractNetInfo.Rd man/getSnnsRDefine.Rd man/SnnsRObject-getInfoHeader.Rd man/SnnsR-class.Rd man/SnnsRObject-getAllOutputUnits.Rd man/encodeClassLabels.Rd man/SnnsRObject-whereAreResults.Rd man/rbf.Rd man/normTrainingAndTestSet.Rd man/SnnsRObject-getSiteDefinitions.Rd man/SnnsRObject-somPredictCurrPatSetWinnersSpanTree.Rd man/rsnnsObjectFactory.Rd man/predict.rsnns.Rd man/SnnsRObject-initializeNet.Rd man/plotRegressionError.Rd man/SnnsRObject-train.Rd man/toNumericClassLabels.Rd man/outputColumns.Rd man/analyzeClassification.Rd man/SnnsRObject-predictCurrPatSet.Rd man/SnnsRObject-createPatSet.Rd man/SnnsRObject-getCompleteWeightMatrix.Rd man/SnnsRObjectFactory.Rd man/savePatFile.Rd man/inputColumns.Rd man/assoz.Rd man/print.rsnns.Rd man/RSNNS-package.Rd man/train.Rd man/rbfDDA.Rd man/som.Rd man/elman.Rd man/vectorToActMap.Rd man/SnnsRObject-createNet.Rd man/plotROC.Rd man/readPatFile.Rd man/SnnsRObject-somPredictComponentMaps.Rd man/getNormParameters.Rd man/resolveSnnsRDefine.Rd man/SnnsRObject-setTTypeUnitsActFunc.Rd man/getSnnsRFunctionTable.Rd man/weightMatrix.Rd man/decodeClassLabels.Rd man/confusionMatrix.Rd man/normalizeData.Rd man/readResFile.Rd man/SnnsRObjectMethodCaller.Rd man/SnnsRObject-getAllInputUnits.Rd man/denormalizeData.Rd man/SnnsRObject-somPredictCurrPatSetWinners.Rd man/plotActMap.Rd man/SnnsRObject-getAllHiddenUnits.Rd man/extractNetInfo.Rd man/art2.Rd man/summary.rsnns.Rd man/SnnsRObject-getTypeDefinitions.Rd man/SnnsRObject-getAllUnitsTType.Rd man/SnnsRObject-getUnitsByName.Rd man/SnnsRObject-getWeightMatrix.Rd man/artmap.Rd man/art1.Rd man/plotIterativeError.Rd man/dlvq.Rd man/SnnsRObject-getAllUnits.Rd man/snnsData.Rd man/SnnsRObject-resetRSNNS.Rd man/mlp.Rd man/setSnnsRSeedValue.Rd man/SnnsRObject-setUnitDefaults.Rd
LICENSE

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.