analyzeClassification | Converts continuous outputs to class labels |
art1 | Create and train an art1 network |
art2 | Create and train an art2 network |
artmap | Create and train an artmap network |
assoz | Create and train an (auto-)associative memory |
confusionMatrix | Computes a confusion matrix |
decodeClassLabels | Decode class labels to a binary matrix |
denormalizeData | Revert data normalization |
dlvq | Create and train a dlvq network |
elman | Create and train an Elman network |
encodeClassLabels | Encode a matrix of (decoded) class labels |
exportToSnnsNetFile | Export the net to a file in the original SNNS file format |
extractNetInfo | Extract information from a network |
getNormParameters | Get normalization parameters of the input data |
getSnnsRDefine | Get a define of the SNNS kernel |
getSnnsRFunctionTable | Get SnnsR function table |
inputColumns | Get the columns that are inputs |
jordan | Create and train a Jordan network |
matrixToActMapList | Convert matrix of activations to activation map list |
mlp | Create and train a multi-layer perceptron (MLP) |
normalizeData | Data normalization |
normTrainingAndTestSet | Function to normalize training and test set |
outputColumns | Get the columns that are targets |
plotActMap | Plot activation map |
plotIterativeError | Plot iterative errors of an rsnns object |
plotRegressionError | Plot a regression error plot |
plotROC | Plot a ROC curve |
predict.rsnns | Generic predict function for rsnns object |
print.rsnns | Generic print function for rsnns objects |
rbf | Create and train a radial basis function (RBF) network |
rbfDDA | Create and train an RBF network with the DDA algorithm |
readPatFile | Load data from a pat file |
readResFile | Rudimentary parser for res files. |
resolveSnnsRDefine | Resolve a define of the SNNS kernel |
rsnnsObjectFactory | Object factory for generating rsnns objects |
RSNNS-package | Getting started with the RSNNS package |
savePatFile | Save data to a pat file |
setSnnsRSeedValue | DEPRECATED, Set the SnnsR seed value |
snnsData | Example data of the package |
SnnsR-class | The main class of the package |
SnnsRObject-createNet | Create a layered network |
SnnsRObject-createPatSet | Create a pattern set |
SnnsRObject-extractNetInfo | Get characteristics of the network. |
SnnsRObject-extractPatterns | Extract the current pattern set to a matrix |
SnnsRObjectFactory | SnnsR object factory |
SnnsRObject-getAllHiddenUnits | Get all hidden units of the net |
SnnsRObject-getAllInputUnits | Get all input units of the net |
SnnsRObject-getAllOutputUnits | Get all output units of the net. |
SnnsRObject-getAllUnits | Get all units present in the net. |
SnnsRObject-getAllUnitsTType | Get all units in the net of a certain 'ttype'. |
SnnsRObject-getCompleteWeightMatrix | Get the complete weight matrix. |
SnnsRObject-getInfoHeader | Get an info header of the network. |
SnnsRObject-getSiteDefinitions | Get the sites definitions of the network. |
SnnsRObject-getTypeDefinitions | Get the FType definitions of the network. |
SnnsRObject-getUnitDefinitions | Get the unit definitions of the network. |
SnnsRObject-getUnitsByName | Find all units whose name begins with a given prefix. |
SnnsRObject-getWeightMatrix | Get the weight matrix between two sets of units |
SnnsRObject-initializeNet | Initialize the network |
SnnsRObjectMethodCaller | Method caller for SnnsR objects |
SnnsRObject-predictCurrPatSet | Predict values with a trained net |
SnnsRObject-resetRSNNS | Reset the SnnsR object. |
SnnsRObject-setTTypeUnitsActFunc | Set the activation function for all units of a certain ttype. |
SnnsRObject-setUnitDefaults | Set the unit defaults |
SnnsRObject-somPredictComponentMaps | Calculate the som component maps |
SnnsRObject-somPredictCurrPatSetWinners | Get most of the relevant results from a som |
SnnsRObject-somPredictCurrPatSetWinnersSpanTree | Get the spanning tree of the SOM |
SnnsRObject-train | Train a network and test it in every training iteration |
SnnsRObject-whereAreResults | Get a list of output units of a net |
som | Create and train a self-organizing map (SOM) |
splitForTrainingAndTest | Function to split data into training and test set |
summary.rsnns | Generic summary function for rsnns objects |
toNumericClassLabels | Convert a vector (of class labels) to a numeric vector |
train | Internal generic train function for rsnns objects |
vectorToActMap | Convert a vector to an activation map |
weightMatrix | Function to extract the weight matrix of an rsnns object |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.