| Distributions | R Documentation | 
The functions listed in this help page are all applicable for AD types. Method dispatching follows a simple rule: If at least one argument is an AD type then a special AD implementation is selected. In all other cases a default implementation is used (typically that of the stats package). Argument recycling follows the R standard (although wihout any warnings).
## S4 method for signature 'ad,ad.,logical.'
dexp(x, rate = 1, log = FALSE)
## S4 method for signature 'num,num.,logical.'
dexp(x, rate = 1, log = FALSE)
## S4 method for signature 'osa,ANY,ANY'
dexp(x, rate = 1, log = FALSE)
## S4 method for signature 'simref,ANY,ANY'
dexp(x, rate = 1, log = FALSE)
## S4 method for signature 'ad,ad,ad.,logical.'
dweibull(x, shape, scale = 1, log = FALSE)
## S4 method for signature 'num,num,num.,logical.'
dweibull(x, shape, scale = 1, log = FALSE)
## S4 method for signature 'osa,ANY,ANY,ANY'
dweibull(x, shape, scale = 1, log = FALSE)
## S4 method for signature 'simref,ANY,ANY,ANY'
dweibull(x, shape, scale = 1, log = FALSE)
## S4 method for signature 'ad,ad,ad,logical.'
dbinom(x, size, prob, log = FALSE)
## S4 method for signature 'num,num,num,logical.'
dbinom(x, size, prob, log = FALSE)
## S4 method for signature 'osa,ANY,ANY,ANY'
dbinom(x, size, prob, log = FALSE)
## S4 method for signature 'simref,ANY,ANY,ANY'
dbinom(x, size, prob, log = FALSE)
## S4 method for signature 'ad,ad,ad,missing,logical.'
dbeta(x, shape1, shape2, log)
## S4 method for signature 'num,num,num,missing,logical.'
dbeta(x, shape1, shape2, log)
## S4 method for signature 'osa,ANY,ANY,ANY,ANY'
dbeta(x, shape1, shape2, log)
## S4 method for signature 'simref,ANY,ANY,ANY,ANY'
dbeta(x, shape1, shape2, log)
## S4 method for signature 'ad,ad,ad,missing,logical.'
df(x, df1, df2, log)
## S4 method for signature 'num,num,num,missing,logical.'
df(x, df1, df2, log)
## S4 method for signature 'osa,ANY,ANY,ANY,ANY'
df(x, df1, df2, log)
## S4 method for signature 'simref,ANY,ANY,ANY,ANY'
df(x, df1, df2, log)
## S4 method for signature 'ad,ad.,ad.,logical.'
dlogis(x, location = 0, scale = 1, log = FALSE)
## S4 method for signature 'num,num.,num.,logical.'
dlogis(x, location = 0, scale = 1, log = FALSE)
## S4 method for signature 'osa,ANY,ANY,ANY'
dlogis(x, location = 0, scale = 1, log = FALSE)
## S4 method for signature 'simref,ANY,ANY,ANY'
dlogis(x, location = 0, scale = 1, log = FALSE)
## S4 method for signature 'ad,ad,missing,logical.'
dt(x, df, log)
## S4 method for signature 'num,num,missing,logical.'
dt(x, df, log)
## S4 method for signature 'osa,ANY,ANY,ANY'
dt(x, df, log)
## S4 method for signature 'simref,ANY,ANY,ANY'
dt(x, df, log)
## S4 method for signature 'ad,ad,ad,missing,logical.'
dnbinom(x, size, prob, log)
## S4 method for signature 'num,num,num,missing,logical.'
dnbinom(x, size, prob, log)
## S4 method for signature 'osa,ANY,ANY,ANY,ANY'
dnbinom(x, size, prob, log)
## S4 method for signature 'simref,ANY,ANY,ANY,ANY'
dnbinom(x, size, prob, log)
## S4 method for signature 'ad,ad,logical.'
dpois(x, lambda, log = FALSE)
## S4 method for signature 'num,num,logical.'
dpois(x, lambda, log = FALSE)
## S4 method for signature 'osa,ANY,ANY'
dpois(x, lambda, log = FALSE)
## S4 method for signature 'simref,ANY,ANY'
dpois(x, lambda, log = FALSE)
## S4 method for signature 'ad,ad,missing,ad.,logical.'
dgamma(x, shape, scale, log)
## S4 method for signature 'num,num,missing,num.,logical.'
dgamma(x, shape, scale, log)
## S4 method for signature 'osa,ANY,ANY,ANY,ANY'
dgamma(x, shape, scale, log)
## S4 method for signature 'simref,ANY,ANY,ANY,ANY'
dgamma(x, shape, scale, log)
## S4 method for signature 'ad,ad.,ad.,missing,missing'
pnorm(q, mean, sd)
## S4 method for signature 'num,num.,num.,missing,missing'
pnorm(q, mean, sd)
## S4 method for signature 'ad,ad,missing,ad.,missing,missing'
pgamma(q, shape, scale)
## S4 method for signature 'num,num,missing,num.,missing,missing'
pgamma(q, shape, scale)
## S4 method for signature 'ad,ad,missing,missing'
ppois(q, lambda)
## S4 method for signature 'num,num,missing,missing'
ppois(q, lambda)
## S4 method for signature 'ad,ad.,missing,missing'
pexp(q, rate)
## S4 method for signature 'num,num.,missing,missing'
pexp(q, rate)
## S4 method for signature 'ad,ad,ad.,missing,missing'
pweibull(q, shape, scale)
## S4 method for signature 'num,num,num.,missing,missing'
pweibull(q, shape, scale)
## S4 method for signature 'ad,ad,ad,missing,missing,missing'
pbeta(q, shape1, shape2)
## S4 method for signature 'num,num,num,missing,missing,missing'
pbeta(q, shape1, shape2)
## S4 method for signature 'ad,ad.,ad.,missing,missing'
qnorm(p, mean, sd)
## S4 method for signature 'num,num.,num.,missing,missing'
qnorm(p, mean, sd)
## S4 method for signature 'ad,ad,missing,ad.,missing,missing'
qgamma(p, shape, scale)
## S4 method for signature 'num,num,missing,num.,missing,missing'
qgamma(p, shape, scale)
## S4 method for signature 'ad,ad.,missing,missing'
qexp(p, rate)
## S4 method for signature 'num,num.,missing,missing'
qexp(p, rate)
## S4 method for signature 'ad,ad,ad.,missing,missing'
qweibull(p, shape, scale)
## S4 method for signature 'num,num,num.,missing,missing'
qweibull(p, shape, scale)
## S4 method for signature 'ad,ad,ad,missing,missing,missing'
qbeta(p, shape1, shape2)
## S4 method for signature 'num,num,num,missing,missing,missing'
qbeta(p, shape1, shape2)
## S4 method for signature 'ad,ad,missing'
besselK(x, nu)
## S4 method for signature 'num,num,missing'
besselK(x, nu)
## S4 method for signature 'ad,ad,missing'
besselI(x, nu)
## S4 method for signature 'num,num,missing'
besselI(x, nu)
## S4 method for signature 'ad,ad'
besselJ(x, nu)
## S4 method for signature 'num,num'
besselJ(x, nu)
## S4 method for signature 'ad,ad'
besselY(x, nu)
## S4 method for signature 'num,num'
besselY(x, nu)
dbinom_robust(x, size, logit_p, log = FALSE)
dsn(x, alpha, log = FALSE)
dSHASHo(x, mu, sigma, nu, tau, log = FALSE)
dtweedie(x, mu, phi, p, log = FALSE)
dnbinom_robust(x, log_mu, log_var_minus_mu, log = FALSE)
dnbinom2(x, mu, var, log = FALSE)
dlgamma(x, shape, scale, log = FALSE)
logspace_add(logx, logy)
logspace_sub(logx, logy)
## S4 method for signature 'ad,ad.,ad.,logical.'
dnorm(x, mean = 0, sd = 1, log = FALSE)
## S4 method for signature 'num,num.,num.,logical.'
dnorm(x, mean = 0, sd = 1, log = FALSE)
## S4 method for signature 'osa,ANY,ANY,ANY'
dnorm(x, mean = 0, sd = 1, log = FALSE)
## S4 method for signature 'simref,ANY,ANY,ANY'
dnorm(x, mean = 0, sd = 1, log = FALSE)
## S4 method for signature 'ANY,ANY,ANY,ANY'
dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
## S4 method for signature 'osa,ANY,ANY,ANY'
dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
## S4 method for signature 'num,num.,num.,logical.'
dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
## S4 method for signature 'advector,missing,missing,missing,missing'
plogis(q)
## S4 method for signature 'advector,missing,missing,missing,missing'
qlogis(p)
dcompois(x, mode, nu, log = FALSE)
dcompois2(x, mean, nu, log = FALSE)
## S4 method for signature 'ad,ad,ad,missing,missing'
pbinom(q, size, prob)
## S4 method for signature 'num,num,num,missing,missing'
pbinom(q, size, prob)
## S4 method for signature 'ad,ad.,ad,logical.'
dmultinom(x, size = NULL, prob, log = FALSE)
## S4 method for signature 'num,num.,num,logical.'
dmultinom(x, size = NULL, prob, log = FALSE)
## S4 method for signature 'osa,ANY,ANY,ANY'
dmultinom(x, size = NULL, prob, log = FALSE)
## S4 method for signature 'simref,ANY,ANY,ANY'
dmultinom(x, size = NULL, prob, log = FALSE)
## S4 method for signature 'ANY,ANY,ANY,ANY'
dmultinom(x, size = NULL, prob, log = FALSE)
| x | observation vector | 
| rate | parameter | 
| log | Logical; Return log density/probability? | 
| shape | parameter | 
| scale | parameter | 
| size | parameter | 
| prob | parameter | 
| shape1 | parameter | 
| shape2 | parameter | 
| df1 | parameter | 
| df2 | parameter | 
| location | parameter | 
| df | parameter | 
| lambda | parameter | 
| q | vector of quantiles | 
| mean | parameter | 
| sd | parameter | 
| p | parameter | 
| nu | parameter | 
| logit_p | parameter | 
| alpha | parameter | 
| mu | parameter | 
| sigma | parameter | 
| tau | parameter | 
| phi | parameter | 
| log_mu | parameter | 
| log_var_minus_mu | parameter | 
| var | parameter | 
| logx | Log-space input | 
| logy | Log-space input | 
| meanlog | Parameter; Mean on log scale. | 
| sdlog | Parameter; SD on log scale. | 
| mode | parameter | 
Specific documentation of the functions and arguments should be looked up elsewhere:
 All S4 methods behave as the corresponding functions in the
stats package. However, some arguements may not be
implemented in the AD case (e.g. lower-tail).
Other funtions behave as the corresponding TMB versions for which documentation should be looked up online.
In autodiff contexts an object of class "advector" is returned; Otherwise a standard numeric vector.
dexp(x = ad, rate = ad., log = logical.): AD implementation of dexp
dexp(x = num, rate = num., log = logical.): Default method
dexp(x = osa, rate = ANY, log = ANY): OSA implementation
dexp(x = simref, rate = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dweibull(x = ad, shape = ad, scale = ad., log = logical.): AD implementation of dweibull
dweibull(x = num, shape = num, scale = num., log = logical.): Default method
dweibull(x = osa, shape = ANY, scale = ANY, log = ANY): OSA implementation
dweibull(x = simref, shape = ANY, scale = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dbinom(x = ad, size = ad, prob = ad, log = logical.): AD implementation of dbinom
dbinom(x = num, size = num, prob = num, log = logical.): Default method
dbinom(x = osa, size = ANY, prob = ANY, log = ANY): OSA implementation
dbinom(x = simref, size = ANY, prob = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dbeta(x = ad, shape1 = ad, shape2 = ad, ncp = missing, log = logical.): AD implementation of dbeta
dbeta(x = num, shape1 = num, shape2 = num, ncp = missing, log = logical.): Default method
dbeta(x = osa, shape1 = ANY, shape2 = ANY, ncp = ANY, log = ANY): OSA implementation
dbeta(x = simref, shape1 = ANY, shape2 = ANY, ncp = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
df(x = ad, df1 = ad, df2 = ad, ncp = missing, log = logical.): AD implementation of df
df(x = num, df1 = num, df2 = num, ncp = missing, log = logical.): Default method
df(x = osa, df1 = ANY, df2 = ANY, ncp = ANY, log = ANY): OSA implementation
df(x = simref, df1 = ANY, df2 = ANY, ncp = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dlogis(x = ad, location = ad., scale = ad., log = logical.): AD implementation of dlogis
dlogis(x = num, location = num., scale = num., log = logical.): Default method
dlogis(x = osa, location = ANY, scale = ANY, log = ANY): OSA implementation
dlogis(x = simref, location = ANY, scale = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dt(x = ad, df = ad, ncp = missing, log = logical.): AD implementation of dt
dt(x = num, df = num, ncp = missing, log = logical.): Default method
dt(x = osa, df = ANY, ncp = ANY, log = ANY): OSA implementation
dt(x = simref, df = ANY, ncp = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dnbinom(x = ad, size = ad, prob = ad, mu = missing, log = logical.): AD implementation of dnbinom
dnbinom(x = num, size = num, prob = num, mu = missing, log = logical.): Default method
dnbinom(x = osa, size = ANY, prob = ANY, mu = ANY, log = ANY): OSA implementation
dnbinom(x = simref, size = ANY, prob = ANY, mu = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dpois(x = ad, lambda = ad, log = logical.): AD implementation of dpois
dpois(x = num, lambda = num, log = logical.): Default method
dpois(x = osa, lambda = ANY, log = ANY): OSA implementation
dpois(x = simref, lambda = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dgamma(x = ad, shape = ad, rate = missing, scale = ad., log = logical.): AD implementation of dgamma
dgamma(x = num, shape = num, rate = missing, scale = num., log = logical.): Default method
dgamma(x = osa, shape = ANY, rate = ANY, scale = ANY, log = ANY): OSA implementation
dgamma(x = simref, shape = ANY, rate = ANY, scale = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
pnorm(q = ad, mean = ad., sd = ad., lower.tail = missing, log.p = missing): AD implementation of pnorm
pnorm(q = num, mean = num., sd = num., lower.tail = missing, log.p = missing): Default method
pgamma(
  q = ad,
  shape = ad,
  rate = missing,
  scale = ad.,
  lower.tail = missing,
  log.p = missing
): AD implementation of pgamma
pgamma(
  q = num,
  shape = num,
  rate = missing,
  scale = num.,
  lower.tail = missing,
  log.p = missing
): Default method
ppois(q = ad, lambda = ad, lower.tail = missing, log.p = missing): AD implementation of ppois
ppois(q = num, lambda = num, lower.tail = missing, log.p = missing): Default method
pexp(q = ad, rate = ad., lower.tail = missing, log.p = missing): AD implementation of pexp
pexp(q = num, rate = num., lower.tail = missing, log.p = missing): Default method
pweibull(
  q = ad,
  shape = ad,
  scale = ad.,
  lower.tail = missing,
  log.p = missing
): AD implementation of pweibull
pweibull(
  q = num,
  shape = num,
  scale = num.,
  lower.tail = missing,
  log.p = missing
): Default method
pbeta(
  q = ad,
  shape1 = ad,
  shape2 = ad,
  ncp = missing,
  lower.tail = missing,
  log.p = missing
): AD implementation of pbeta
pbeta(
  q = num,
  shape1 = num,
  shape2 = num,
  ncp = missing,
  lower.tail = missing,
  log.p = missing
): Default method
qnorm(p = ad, mean = ad., sd = ad., lower.tail = missing, log.p = missing): AD implementation of qnorm
qnorm(p = num, mean = num., sd = num., lower.tail = missing, log.p = missing): Default method
qgamma(
  p = ad,
  shape = ad,
  rate = missing,
  scale = ad.,
  lower.tail = missing,
  log.p = missing
): AD implementation of qgamma
qgamma(
  p = num,
  shape = num,
  rate = missing,
  scale = num.,
  lower.tail = missing,
  log.p = missing
): Default method
qexp(p = ad, rate = ad., lower.tail = missing, log.p = missing): AD implementation of qexp
qexp(p = num, rate = num., lower.tail = missing, log.p = missing): Default method
qweibull(
  p = ad,
  shape = ad,
  scale = ad.,
  lower.tail = missing,
  log.p = missing
): AD implementation of qweibull
qweibull(
  p = num,
  shape = num,
  scale = num.,
  lower.tail = missing,
  log.p = missing
): Default method
qbeta(
  p = ad,
  shape1 = ad,
  shape2 = ad,
  ncp = missing,
  lower.tail = missing,
  log.p = missing
): AD implementation of qbeta
qbeta(
  p = num,
  shape1 = num,
  shape2 = num,
  ncp = missing,
  lower.tail = missing,
  log.p = missing
): Default method
besselK(x = ad, nu = ad, expon.scaled = missing): AD implementation of besselK
besselK(x = num, nu = num, expon.scaled = missing): Default method
besselI(x = ad, nu = ad, expon.scaled = missing): AD implementation of besselI
besselI(x = num, nu = num, expon.scaled = missing): Default method
besselJ(x = ad, nu = ad): AD implementation of besselJ
besselJ(x = num, nu = num): Default method
besselY(x = ad, nu = ad): AD implementation of besselY
besselY(x = num, nu = num): Default method
dbinom_robust(): AD implementation
dsn(): AD implementation
dSHASHo(): AD implementation
dtweedie(): AD implementation
dnbinom_robust(): AD implementation
dnbinom2(): AD implementation
dlgamma(): AD implementation
logspace_add(): AD implementation
logspace_sub(): AD implementation
dnorm(x = ad, mean = ad., sd = ad., log = logical.): AD implementation of dnorm
dnorm(x = num, mean = num., sd = num., log = logical.): Default method
dnorm(x = osa, mean = ANY, sd = ANY, log = ANY): OSA implementation
dnorm(x = simref, mean = ANY, sd = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dlnorm(x = ANY, meanlog = ANY, sdlog = ANY, log = ANY): AD implementation of dlnorm.
dlnorm(x = osa, meanlog = ANY, sdlog = ANY, log = ANY): OSA implementation.
dlnorm(x = num, meanlog = num., sdlog = num., log = logical.): Default method.
plogis(
  q = advector,
  location = missing,
  scale = missing,
  lower.tail = missing,
  log.p = missing
): Minimal AD implementation of plogis
qlogis(
  p = advector,
  location = missing,
  scale = missing,
  lower.tail = missing,
  log.p = missing
): Minimal AD implementation of qlogis
dcompois(): Conway-Maxwell-Poisson. Calculate density.
dcompois2(): Conway-Maxwell-Poisson. Calculate density parameterized via the mean.
pbinom(q = ad, size = ad, prob = ad, lower.tail = missing, log.p = missing): AD implementation of pbinom
pbinom(q = num, size = num, prob = num, lower.tail = missing, log.p = missing): Default method
dmultinom(x = ad, size = ad., prob = ad, log = logical.): AD implementation of dmultinom
dmultinom(x = num, size = num., prob = num, log = logical.): Default method
dmultinom(x = osa, size = ANY, prob = ANY, log = ANY): OSA implementation
dmultinom(x = simref, size = ANY, prob = ANY, log = ANY): Simulation implementation. Modifies x and returns zero.
dmultinom(x = ANY, size = ANY, prob = ANY, log = ANY): Default implementation that checks for invalid usage.
MakeTape( function(x) pnorm(x), x=numeric(5))$jacobian(1:5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.