Performs random projection using JohnsonLindenstrauss (JL) Lemma (see William B.Johnson and Joram Lindenstrauss (1984) <doi:10.1090/conm/026/737400>). Random Projection is a dimension reduction technique, where the data in the high dimensional space is projected into the low dimensional space using JL transform. The original high dimensional data matrix is multiplied with the low dimensional projection matrix which results in reduced matrix. The projection matrix can be generated using the projection function that is independent to the original data. Then finally apply the classification task on the projected data.
Package details 


Author  Aghila G, Siddharth R 
Maintainer  Siddharth R <[email protected]> 
License  GPL (>= 2) 
Version  0.2.0 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.