csu_CI5XII_data | R Documentation |
CI5 XII summary database.
data("csu_CI5XII_data")
A data frame with 1113210 observations on the following 10 variables.
id_code
population code (integer)
id_label
population label (character)
country_code
UN country code (integer)
ethnic_code
ethnic code (integer)
cancer_code
cancer code (integer)
cancer_label
cancer label (character)
sex
sex (integer)
age
age variable from 1 to 19. 1 is 0-4 years, 2 is 5-9, etc..., 17 is 80-84, 18 is 85+, 19 represents missing age. (integer)
cases
Number of cases (incidence) (integer)
py
Population-year: Reference population of the registry (integer)
period
Period (character)
All information are available here: https://ci5.iarc.fr/ci5-xii/
csu_asr
csu_cumrisk
csu_eapc
csu_ageSpecific
data("csu_CI5XII_data")
#get the id code asssociate to id_label
#print(unique(csu_CI5XII_data[,c("id_code", "id_label" )]),nrows = 1000)
#get the cancer code asssociate to cancer_label
#print(unique(csu_CI5XII_data[,c("cancer_label", "cancer_code")]),nrows = 1000)
#remove all cancers:
df_data <- subset(csu_CI5XII_data ,cancer_code < 62)
#change group_by option to factor
df_data$sex <- factor(df_data$sex, levels=c(1,2), labels=c("Male", "Female"))
#select Thailand changmai
df_data_1 <- subset(df_data, id_code==476400199)
dt_result_1 <- csu_ageSpecific_top(df_data_1,
var_age="age",
var_cases="cases",
var_py="py",
var_top="cancer_label",
group_by="sex",
plot_title= "Thailand, Chiangmai",
plot_subtitle = "Top 5 cancer",
missing_age = 19)
#select USA
df_data_2 <- subset(df_data,id_code== 384008099 & ethnic_code == 99)
dt_result_2 <- csu_ageSpecific_top(df_data_2,
var_age="age",
var_cases="cases",
var_py="py",
var_top="cancer_label",
group_by="sex",
plot_title= "USA",
plot_subtitle = "Top 5 cancer",
missing_age = 19)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.