knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
# The following line seems to be required by pkgdown::build_site() on my # machine, but causes build to break with R-CMD-CHECK on GH knitr::opts_chunk$set(dev = "png", dev.args = list(type = "cairo-png"))
COM(P)ADRE databases contain thousands of matrix population models. If we want to derive traits from a large set of these matrices, we'll need to use either loops or vectorisation.
Vectorising means applying a function to each element of a vector. Here vector is defined broadly - it could be a sequence of character strings, a column of a data.frame
, a list
of matrices, etc. Vectorised code generally runs faster than loops, and many R users find that vectorised code is easier to write and understand.
We'll start by loading a few packages and a dataset that we'll be using throughout this vignette. The dataset Compadre
is a subset of a recent COMPADRE release that's built into Rcompadre
.
library(Rcompadre) library(popdemo) data(Compadre)
To understand vectorisation, we first need a vector. For this purpose, we'll extract a list of A matrices from the mat
column of Compadre
, and add this list of matrices to Compadre
as a new column.
Compadre$matA <- matA(Compadre)
This new column, Compadre$matA
, is both a vector and a list.
is.vector(Compadre$matA) # it really is a vector is.list(Compadre$matA) # and also a list length(Compadre$matA) # with 150 matrices Compadre$matA[1:3] # here are the first three
Let's say we want to calculate the dimension of every matrix in Compadre$matA
. In fact, Compadre
already has this data in the column 'MatrixDimension', but let's say we want to double-check it. We'll use the function nrow()
, and assume that the number of rows and columns are equal. But we can't use nrow()
directly on Compadre$matA
, because the function nrow()
isn't vectorised. It can only take one object at a time.
We could do something like this...
Compadre$dim <- numeric(nrow(Compadre)) # create empty vector to store output Compadre$dim[1] <- nrow(Compadre$matA[[1]]) # nrow matrix 1 Compadre$dim[2] <- nrow(Compadre$matA[[2]]) # nrow matrix 2 Compadre$dim[3] <- nrow(Compadre$matA[[3]]) # nrow matrix 3 # ... all the way to 150
But that's not very efficient for 150 matrices.
A loop would be much more efficient here.
# create empty vector to store output Compadre$dim <- numeric(nrow(Compadre)) # loop through all rows of Compadre for (i in seq_len(nrow(Compadre))) { Compadre$dim[i] <- nrow(Compadre$matA[[i]]) }
An even nicer approach is to vectorise the function nrow()
over the vector Compadre$matA
using sapply()
.
Compadre$dim <- sapply(Compadre$matA, nrow)
sapply()
applies the function specified in the 2nd argument (nrow()
) to every element of the vector in the first argument (Compadre$matA
), and returns a vector of the results. The advantage of sapply()
over the loop is that we don't need to pre-define an object to store the results.
We can also vectorise with a custom function. Let's say we want to know, for every matrix, whether there are stages with no transitions (i.e. any column sums equal to zero). Here's a vectorised approach.
# function to determine whether matrix 'mat' has any stages with no transitions NullStages <- function(mat) any(colSums(mat) == 0) # apply function to every element of A Compadre$null_stages <- sapply(Compadre$matA, NullStages)
The key to vectorising is to make sure the function works on individual elements of the vector.
NullStages(Compadre$matA[[1]]) # apply function to single element
Note that, in the example above, it wasn't necessary to create the column Compadre$matA
before vectorising over the A matrices. We could have simply used the matA()
accessor within sapply()
.
Compadre$null_stages <- sapply(matA(Compadre), NullStages)
cdb_unnest()
to avoid accessorsThat said, using accessor funtions can get tedious. Rather than constantly using accessor functions to extract components of the mat
column, we could use the function cdb_unnest()
to extract separate columns for all matrix components at the start of our analysis.
# create new columns matA, matU, matF, matC, MatrixClassAuthor, etc.. CompUnnest <- cdb_unnest(Compadre)
Then we can refer to any component using $
, e.g.
# apply NullStages to every matA CompUnnest$null_stages <- sapply(CompUnnest$matA, NullStages) # count number of dormant stages in every MatrixClassOrganized NumberDormant <- function(stages) length(which(stages == "dorm")) CompUnnest$n_dormant <- sapply(CompUnnest$MatrixClassOrganized, NumberDormant)
vapply()
is similar to sapply()
, except that the output type is specified as an argument.
sapply(CompUnnest$matA[1:6], nrow) vapply(CompUnnest$matA[1:6], nrow, numeric(1)) # must specify output type
lapply()
always returns a list
, so it's useful if our output is more complex than a single value for each input. For example, we could use lapply
to calculate vectors of stage-specific survival (column sums of matU
).
lapply(CompUnnest$matU[1:4], function(m) colSums(m))
mapply()
is for vectorising over multiple arguments. For example, the lifeExpectancy()
function below (taken from the package Rage) calculates life expectancy given two arguments: a U matrix, and an integer indicator for the stage class reflecting the 'start of life'. The start of life is often defined as the first 'active' stage class (i.e. not propagule or dormant), the index of which will vary from row to row.
# function to calculate life expectancy lifeExpectancy <- function(matU, startLife) { N <- solve(diag(nrow(matU)) - matU) return(colSums(N)[startLife]) } # get index of first active stage class with mpm_first_active() CompUnnest$start_life <- mpm_first_active(CompUnnest) # vectorise lifeExpectancy over matU and start_life mapply( lifeExpectancy, # function CompUnnest$matU[1:6], # first argument to vectorise over CompUnnest$start_life[1:6] ) # second argument to vectorise over
Just like loops, vectorisation fails if the function being vectorised throws an error on any element of the vector. Here's an example. The eigs()
function from popdemo calculates the expected population growth rate given a projection matrix. It'll work on most of the A matrices in Compadre
, but fails on matrices that contain missing values (NA
).
# works for a single matrix popdemo::eigs(CompUnnest$matA[[1]], what = "lambda") # but fails when applied to all matrices because a few have missing values CompUnnest$lambda <- sapply(CompUnnest$matA, popdemo::eigs, what = "lambda")
There are two basic approaches to overcoming this:
If eigs()
doesn't work on matrices with missing values, one approach is to simply remove matrices with missing values. The cdb_flag()
function is an easy way to check for missing values, and other common issues that might hinder our analyses.
# add column 'check_NA_A', indicating whether matA contains missing values (T/F) CompFlag <- cdb_flag(CompUnnest, checks = "check_NA_A") # remove rows where matA contains missing values CompSub <- subset(CompFlag, check_NA_A == FALSE) # apply lambda() to every remaining matA CompSub$lambda <- sapply(matA(CompSub), popdemo::eigs, what = "lambda")
Alternatively, if we want to avoid subsetting, we could pre-define a placeholder column for the result, and then selectively apply the eigs()
function to only those matrices that don't contain missing values.
# identify rows with no missing values in matA no_missing <- which(CompFlag$check_NA_A == FALSE) # create placeholder column for lambda CompFlag$lambda <- NA # apply eigs() to all matA with no missing values CompFlag$lambda[no_missing] <- sapply(CompFlag$matA[no_missing], popdemo::eigs, what = "lambda" )
Rows where there were missing values in matA
retain the original placeholder value of NA
.
A second approach is to modify the function we want to vectorise with so that it can natively handle special cases. For example, we might modify eigs()
so that it returns NA
if a matrix contains missing values.
lambdaFn1 <- function(mat) { # check mat for missing values: if TRUE return NA, else return eigs(mat) ifelse(anyNA(mat), NA, popdemo::eigs(mat, what = "lambda")) } CompUnnest$lambda <- sapply(CompUnnest$matA, lambdaFn1)
If the special cases are harder to test for, we could use R's condition-handling functions like try()
or tryCatch()
. Here's an example.
lambdaFn2 <- function(mat) { # try eigs(mat): if error return NA tryCatch(eigs(mat, what = "lambda"), error = function(err) NA) } CompUnnest$lambda <- sapply(CompUnnest$matA, lambdaFn2)
This latter approach requires caution, as we'll get an NA
for any error. Some errors might reflect problems with our data or code that are fixable, in which case an NA
may be misleading.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.