View source: R/ReSurvIndividualData.R
| ReSurv.IndividualDataPP | R Documentation | 
ReSurv models on the individual data.This function fits and computes the reserves for the ReSurv models
## S3 method for class 'IndividualDataPP'
ReSurv(
  IndividualDataPP,
  hazard_model = "COX",
  tie = "efron",
  baseline = "spline",
  continuous_features_scaling_method = "minmax",
  random_seed = 1,
  hparameters = list(),
  percentage_data_training = 0.8,
  grouping_method = "exposure",
  check_value = 1.85
)
IndividualDataPP | 
 IndividualDataPP object to use for the   | 
hazard_model | 
 
 
  | 
tie | 
 ties handling, default is the Efron approach.  | 
baseline | 
 handling the baseline hazard. Default is a spline.  | 
continuous_features_scaling_method | 
 method to preprocess the features  | 
random_seed | 
 
  | 
hparameters | 
 
  | 
percentage_data_training | 
 
  | 
grouping_method | 
 
 
 Default is   | 
check_value | 
 
  | 
The model fit uses the theoretical framework of Hiabu et al. (2023), that relies on the correspondence between hazard models and development factors:
To be completed with final notation of the paper.
The ReSurv package assumes proportional hazard models.
Given an i.i.d. sample \left\{y_i,x_i\right\}_{i=1, \ldots, n} the individual hazard at time t is:
\lambda_i(t)=\lambda_0(t)e^{y_i(x_i)}
Composed of a baseline \lambda_0(t) and a proportional effect e^{y_i(x_i)}.
Currently, the implementation allows to optimize the partial likelihood (concerning the proportional effects) using one of the following statistical learning approaches:
ReSurv fit. A list containing
model.out: list containing the pre-processed covariates data for the fit (data) and the basic model output (model.out;COX, XGB or NN).
is_lkh: numeric Training negative log likelihood.
os_lkh:  numeric Validation  negative log likelihood. Not available for COX.
hazard_frame: data.frame containing the fitted hazard model with the corresponding covariates. It contains:
expg: fitted risk score.
baseline: fitted baseline.
hazard: fitted hazard rate (expg*baseline).
f_i: fitted development factors.
cum_f_i: fitted cumulative development factors.
S_i:fitted survival function.
S_i_lag:fitted survival function (lag version, for further information see ?dplyr::lag).
S_i_lead:fitted survival function (lead version, for further information see ?dplyr::lead).
hazard_model: string chosen hazard model (COX, NN or XGB)
IndividualDataPP: starting IndividualDataPP object.
Pittarello, G., Hiabu, M., & Villegas, A. M. (2023). Chain Ladder Plus: a versatile approach for claims reserving. arXiv preprint arXiv:2301.03858.
Therneau, T. M., & Lumley, T. (2015). Package ‘survival’. R Top Doc, 128(10), 28-33.
Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., & Kluger, Y. (2018). DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC medical research methodology, 18(1), 1-12.
Chen, T., He, T., Benesty, M., & Khotilovich, V. (2019). Package ‘xgboost’. R version, 90, 1-66.
input_data_0 <- data_generator(
random_seed = 1964,
scenario = "alpha",
time_unit = 1,
years = 4,
period_exposure = 100)
individual_data <- IndividualDataPP(data = input_data_0,
categorical_features = "claim_type",
continuous_features = "AP",
accident_period = "AP",
calendar_period = "RP",
input_time_granularity = "years",
output_time_granularity = "years",
years=4)
resurv_fit_cox <- ReSurv(individual_data,
hazard_model = "COX")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.